首页> 外文期刊>Journal of Electrochemical Energy Conversion and Storage >A Thompson Sampling Efficient Multi-Objective Optimization Algorithm (TSEMO) for Lithium-Ion Battery Liquid-Cooled Thermal Management System: Study of Hydrodynamic, Thermodynamic, and Structural Performance
【24h】

A Thompson Sampling Efficient Multi-Objective Optimization Algorithm (TSEMO) for Lithium-Ion Battery Liquid-Cooled Thermal Management System: Study of Hydrodynamic, Thermodynamic, and Structural Performance

机译:用于锂离子电池液冷热管理系统的汤普森采样高效多目标优化算法(TSEMO):流体动力学,热力学和结构性能研究

获取原文
获取原文并翻译 | 示例
           

摘要

The efficient design of battery thermal management systems (BTMSs) plays an important role in enhancing the performance, life, and safety of electric vehicles (EVs). This paper aims at designing and optimizing cold plate-based liquid cooling BTMS. Pitch sizes of channels, inlet velocity, and inlet temperature of the outermost channel are considered as design parameters. Evaluating the influence and optimization of design parameters by repeated computational fluid dynamics calculations is time consuming. To tackle this, the effect of design parameters is studied by using surrogate modeling. Optimized design variables should ensure a perfect balance between certain conflicting goals, namely, cooling efficiency, BTMS power consumption (parasitic power), and size of the battery. Therefore, the optimization problem is decoupled into hydrodynamic performance, thermodynamic performance, and mechanical structure performance. The optimal design involving multiple conflicting objectives in BTMS is solved by adopting the Thompson sampling efficient multi-objective optimization algorithm. The results obtained are as follows. The optimized average battery temperature after optimization decreased from 319.86 K to 319.2759 K by 0.18%. The standard deviation of battery temperature decreased from 5.3347 K to 5.2618 K by 1.37%. The system pressure drop decreased from 7.3211 Pa to 3.3838 Pa by 53.78%. The performance of the optimized battery cooling system has been significantly improved.
机译:电池热管理系统(BTMS)的有效设计对提高电动汽车(EV)的性能、寿命和安全性起着重要作用。本文旨在设计和优化基于冷板的液体冷却BTM。通道的节距尺寸、入口速度和最外层通道的入口温度被视为设计参数。通过重复计算流体力学计算来评估设计参数的影响和优化非常耗时。为了解决这个问题,我们使用代理模型研究了设计参数的影响。优化的设计变量应确保某些相互冲突的目标之间的完美平衡,即冷却效率、BTMS功耗(寄生功率)和电池尺寸。因此,将优化问题分解为水动力性能、热力性能和机械结构性能。采用汤普森采样高效多目标优化算法,解决了BTMS中涉及多个冲突目标的优化设计问题。所得结果如下。优化后的电池平均温度从319.86 K降至319.2759 K,降低了0.18%。电池温度的标准偏差从5.3347 K降至5.2618 K,下降了1.37%。系统压降从7.3211 Pa降至3.3838 Pa,下降了53.78%。优化后的电池冷却系统的性能得到了显著改善。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号