...
首页> 外文期刊>Journal of CO2 Utilization >Theoretical insights into catalytic CO2 hydrogenation over single-atom (Fe or Ni) incorporated nitrogen-doped graphene
【24h】

Theoretical insights into catalytic CO2 hydrogenation over single-atom (Fe or Ni) incorporated nitrogen-doped graphene

机译:在单原子(Fe或Ni)上催化CO2氢化的理论见解掺入氮掺杂石墨烯

获取原文
获取原文并翻译 | 示例
           

摘要

Developing highly efficient and cheap catalysts for the CO2 hydrogenation is the key to achieve CO2 conversion into clean energy. Herein, periodic density functional theory (DFT) calculations are performed to investigate possible reaction mechanisms for the hydrogenation of CO2 to formic acid (cis- or trans-HCOOH) product over a single Fe or Ni atom incorporated nitrogen-doped graphene (Fe-N3Gr or Ni-N3Gr) sheets. Our calculations found that the CO2 hydrogenation proceeds via a coadsorption mechanism to produce cis- or trans-HCOOH over FeN3Gr and Ni-N3Gr surfaces, which is classified into 2 steps: (1) the CO2 hydrogenation to form a formate (HCOO*) intermediate and (2) hydrogen abstraction to produce cis- or trans-HCOOH. The formation of transHCOOH over both Fe-N3Gr and Ni-N3Gr surfaces exhibit the obvious superiority due to the low barrier all through the whole channel. The highest energy barriers (Ea) in the case of trans-HCOOH formation on Fe-N3Gr and Ni-N3Gr surfaces are only 0.57 and 0.37 eV, respectively, which indicated that the CO2 hydrogenation to trans-HCOOH could be realized over these catalysts at low temperatures, especially the Ni-N3Gr surface. On the other hand, our findings show that the competitive reaction that produces CO and H2O is almost impossible or extremely difficult to proceeds under ambient conditions due to the large Ea for the formation of these side products. Moreover, the microkinetic modeling of the CO2 hydrogenation on both surfaces was investigated to confirm these results. Thus, the Fe-N3Gr and Ni-N3Gr catalysts reveal excellent catalytic activity and highly selective for CO2 hydrogenation to trans-HCOOH. This theoretical investigation not only provides a promising catalyst but also gives a deeper understanding of CO2 hydrogenation reaction.
机译:开发高效廉价的CO2加氢催化剂是实现CO2转化为清洁能源的关键。在此,通过周期密度泛函理论(DFT)计算,研究了在掺氮石墨烯(Fe-N3Gr或Ni-N3Gr)片上,CO2加氢生成甲酸(顺式或反式HCOOH)产品的可能反应机理。我们的计算发现,CO2加氢通过共吸附机制在FeN3Gr和Ni-N3Gr表面生成顺式或反式HCOOH,分为两个步骤:(1)CO2加氢形成甲酸盐(HCOO*)中间体;(2)抽氢生成顺式或反式HCOOH。在Fe-N3Gr和Ni-N3Gr表面上形成的transHCOOH由于整个通道的低势垒而显示出明显的优势。Fe-N3Gr和Ni-N3Gr表面生成反式HCOOH的最高势垒(Ea)分别只有0.57和0.37 eV,这表明在这些催化剂上,尤其是在Ni-N3Gr表面,可以在低温下实现CO2加氢生成反式HCOOH。另一方面,我们的研究结果表明,在环境条件下,产生CO和H2O的竞争反应几乎不可能或极难进行,因为这些副产物形成的Ea很大。此外,还研究了两种表面上CO2加氢的微观动力学模型,以证实这些结果。因此,Fe-N3Gr和Ni-N3Gr催化剂对CO2加氢制反式HCOOH具有优异的催化活性和高选择性。这一理论研究不仅提供了一种很有前途的催化剂,而且对CO2加氢反应有了更深入的了解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号