首页> 外文期刊>Journal of chemical theory and computation: JCTC >Machine Learning-Assisted Excited State Molecular Dynamics with the State-Interaction State-Averaged Spin-Restricted Ensemble-Referenced Kohn–Sham Approach
【24h】

Machine Learning-Assisted Excited State Molecular Dynamics with the State-Interaction State-Averaged Spin-Restricted Ensemble-Referenced Kohn–Sham Approach

机译:机器学习辅助激发状态分子动力学与状态相互作用状态平均旋转限制合奏引用的Kohn-Sham方法

获取原文
获取原文并翻译 | 示例
           

摘要

We present a machine learning-assisted excited state molecular dynamics (ML-ESMD) based on the ensemble density functional theory framework. Since we represent a diabatic Hamiltonian in terms of generalized valence bond ansatz within the state-interaction state-averaged spin-restricted ensemble-referenced Kohn–Sham (SI-SA-REKS) method, we can avoid singularities near conical intersections, which are crucial in excited state molecular dynamics simulations. We train the diabatic Hamiltonian elements and their analytical gradients with the SchNet architecture to construct machine learning models, while the phase freedom of off-diagonal elements of the Hamiltonian is cured by introducing the phase-less loss function. Our machine learning models show reasonable accuracy with mean absolute errors of ~0.1 kcal/mol and ~0.5 kcal/mol/? for the diabatic Hamiltonian elements and their gradients, respectively, for penta-2,4-dieniminium cation. Moreover, by exploiting the diabatic representation, our models can predict correct conical intersection structures and their topologies. In addition, our ML-ESMD simulations give almost identical result with a direct dynamics at the same level of theory.
机译:我们提出了一种基于系综密度泛函理论框架的机器学习辅助激发态分子动力学(ML-ESMD)。由于我们在态相互作用态平均自旋限制系综参考Kohn–Sham(SI-SA-REKS)方法中用广义价键ansatz表示非绝热哈密顿量,我们可以避免锥形交叉点附近的奇异性,这在激发态分子动力学模拟中至关重要。我们用SchNet结构训练非绝热哈密顿元及其解析梯度来构造机器学习模型,同时通过引入无相位损失函数来修正哈密顿元的非对角相位自由度。我们的机器学习模型显示了合理的精度,平均绝对误差为~0.1 kcal/mol和~0.5 kcal/mol/?对于非绝热哈密顿元素及其梯度,分别为五-2,4-二铵阳离子。此外,通过利用非绝热表示,我们的模型可以预测正确的圆锥相交结构及其拓扑。此外,我们的ML-ESMD模拟在相同的理论水平上给出了与直接动力学几乎相同的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号