首页> 外文期刊>Journal of chemical theory and computation: JCTC >Optimization of the Linear-Scaling Local Natural Orbital CCSD(T) Method: Improved Algorithm and Benchmark Applications
【24h】

Optimization of the Linear-Scaling Local Natural Orbital CCSD(T) Method: Improved Algorithm and Benchmark Applications

机译:线性缩放局部自然轨道CCSD(T)方法的优化:改进算法和基准应用

获取原文
获取原文并翻译 | 示例
           

摘要

An optimized implementation of the local natural orbital (LNO) coupled-cluster (CC) with single-, double-, and perturbative triple excitations [LNO-CCSD(T)] method is presented. The integral-direct, in-core, highly efficient domain construction technique of our local second-order Moller-Plesset (LMP2) scheme is extended to the CC level. The resulting scheme, which is also suitable for general-order LNO-CC calculations, inherits the beneficial properties of the LMP2 approach, such as the asymptotically linear-scaling operation count, the asymptotically constant data storage requirement, and the completely independent domain calculations. In addition to integrating our recent redundancy-free LMP2 and Laplace-transformed (T) algorithms with the LNO-CCSD(T) code, the memory demand, the domain and LNO construction, the auxiliary basis compression, and the previously rate-determining two external integral transformation have been significantly improved. The accuracy of all of the approximations is carefully examined on medium-sized to large systems to determine reasonably tight default truncation thresholds. Our benchmark calculations, performed on molecules of up to 63 atoms, show that the optimized method with the default settings provides average correlation and reaction energy errors of less than 0.07% and 0.34 kcal/mol, respectively, compared to the canonical CCSD(T) reference. The efficiency of the present LNO-CCSD(T) implementation is demonstrated on realistic, three-dimensional examples. Using the new code, an LNO-CCSD(T) correlation energy calculation with a triple-sigma basis set is feasible on a single processor for a protein molecule including 2380 atoms and more than 44000 atomic orbitals.
机译:提出了一种单激发、双激发和微扰三重激发的局域自然轨道(LNO)耦合团簇(CC)方法的优化实现。我们的局部二阶Moller-Plesset(LMP2)方案的积分直接、核心内、高效的域构造技术被扩展到CC级。由此产生的方案也适用于一般阶LNO-CC计算,它继承了LMP2方法的优点,如渐近线性缩放运算计数、渐近常数数据存储要求和完全独立的域计算。除了将我们最新的无冗余LMP2和拉普拉斯变换(T)算法与LNO-CCSD(T)代码相结合,内存需求、域和LNO构造、辅助基压缩以及之前决定速率的两个外部积分变换都得到了显著改善。在中型到大型系统上仔细检查所有近似值的准确性,以确定合理紧凑的默认截断阈值。我们对多达63个原子的分子进行的基准计算表明,与标准CCSD(T)参考值相比,默认设置下的优化方法提供的平均关联和反应能误差分别小于0.07%和0.34 kcal/mol。目前LNO-CCSD(T)实现的效率在真实的三维示例中得到了验证。使用新代码,在单个处理器上对一个包含2380个原子和44000多个原子轨道的蛋白质分子进行LNO-CCSD(T)关联能量计算,并采用三西格玛基集是可行的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号