首页> 外文期刊>Journal of chemical theory and computation: JCTC >Treating Subvalence Correlation Effects in Domain Based Pair Natural Orbital Coupled Cluster Calculations: An Out-of-the-Box Approach
【24h】

Treating Subvalence Correlation Effects in Domain Based Pair Natural Orbital Coupled Cluster Calculations: An Out-of-the-Box Approach

机译:治疗基于域对自然轨道耦合集群计算的特征相关效应:出箱外的方法

获取原文
获取原文并翻译 | 示例
           

摘要

The validity of the main approximations used in canonical and domain based pair natural orbital coupled cluster methods (CCSD(T) and DLPNO-CCSD(T), respectively) in standard chemical applications is discussed. In particular, we investigate the dependence of the results on the number of electrons included in the correlation treatment in frozen-core (FC) calculations and on the main threshold governing the accuracy of DLPNO all-electron (AE) calculations. Initially, scalar relativistic orbital energies for the ground state of the atoms from Li to Rn in the periodic table are calculated. An energy criterion is used for determining the orbitals that can be excluded from the correlation treatment in FC coupled cluster calculations without significant loss of accuracy. The heterolytic dissociation energy (HDE) of a series of metal compounds (LiF, NaF, AlF3, CaF2, CuF, GaF3, YF3, AgF, InF3, HfF4, and AuF) is calculated at the canonical CCSD(T) level, and the dependence of the results on the number of correlated electrons is investigated. Although for many of the studied reactions subvalence correlation effects contribute significantly to the HDE, the use of an energy criterion permits a conservative definition of the size of the core, allowing FC calculations to be performed in a black-box fashion while retaining chemical accuracy. A comparison of the CCSD and the DLPNO-CCSD methods in describing the core core, core valence, and valence valence components of the correlation energy is given. It is found that more conservative thresholds must be used for electron pairs containing at least one core electron in order to achieve high accuracy in AE DLPNO-CCSD calculations relative to FC calculations. With the new settings, the DLPNO-CCSD method reproduces canonical CCSD results in both AE and FC calculations with the same accuracy.
机译:讨论了正则和基于域的成对自然轨道耦合簇方法(分别为CCSD(T)和DLPNO-CCSD(T))中使用的主要近似在标准化学应用中的有效性。特别是,我们研究了结果与冻核(FC)计算中相关处理中包含的电子数以及控制DLPNO全电子(AE)计算精度的主要阈值之间的依赖关系。首先,计算了周期表中Li到Rn原子基态的标量相对论轨道能量。能量准则用于确定在FC耦合团簇计算中可以排除在相关处理之外的轨道,而不会显著降低精度。在经典CCSD(T)水平上计算了一系列金属化合物(LiF、NaF、AlF3、CaF2、CuF、GaF3、YF3、AgF、InF3、HfF4和AuF)的异裂解离能(HDE),并研究了结果与相关电子数的依赖性。尽管对于许多已研究的反应,亚价关联效应对HDE有显著影响,但使用能量标准可以保守地定义核心尺寸,允许以黑匣子方式进行FC计算,同时保持化学准确性。比较了CCSD和DLPNO-CCSD方法在描述相关能的核-核、核价和价-价分量方面的差异。研究发现,为了在AE DLPNO-CCSD计算中获得相对于FC计算的高精度,必须对至少包含一个核心电子的电子对使用更保守的阈值。在新的设置下,DLPNO-CCSD方法在AE和FC计算中以相同的精度再现标准CCSD结果。

著录项

  • 来源
  • 作者单位

    Max Planck Inst Chem Energy Convers Dept Mol Theory &

    Spect Stiftstr 34-36 D-45470 Mulheim Germany;

    Max Planck Inst Chem Energy Convers Dept Mol Theory &

    Spect Stiftstr 34-36 D-45470 Mulheim Germany;

    King Abdullah Univ Sci &

    Technol KAUST Catalysis Ctr Phys Sci &

    Engn Div Thuwal 239556900 Saudi Arabia;

    King Abdullah Univ Sci &

    Technol KAUST Catalysis Ctr Phys Sci &

    Engn Div Thuwal 239556900 Saudi Arabia;

    Max Planck Inst Chem Energy Convers Dept Mol Theory &

    Spect Stiftstr 34-36 D-45470 Mulheim Germany;

    Max Planck Inst Chem Energy Convers Dept Mol Theory &

    Spect Stiftstr 34-36 D-45470 Mulheim Germany;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 化学键的量子力学理论;化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号