首页> 外文OA文献 >Treating Subvalence Correlation Effects in Domain Based Pair Natural Orbital Coupled Cluster Calculations: An Out-of-the-Box Approach
【2h】

Treating Subvalence Correlation Effects in Domain Based Pair Natural Orbital Coupled Cluster Calculations: An Out-of-the-Box Approach

机译:在基于域对自然轨道耦合集群计算中的计产相关效应:出箱外的方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The validity of the main approximations used in canonical and domain based pair natural orbital coupled cluster methods (CCSD(T) and DLPNO-CCSD(T), respectively) in standard chemical applications is discussed. In particular, we investigate the dependence of the results on the number of electrons included in the correlation treatment in frozen-core (FC) calculations and on the main threshold governing the accuracy of DLPNO all-electron (AE) calculations. Initially, scalar relativistic orbital energies for the ground state of the atoms from Li to Rn in the periodic table are calculated. An energy criterion is used for determining the orbitals that can be excluded from the correlation treatment in FC coupled cluster calculations without significant loss of accuracy. The heterolytic dissociation energy (HDE) of a series of metal compounds (LiF, NaF, AlF3, CaF2, CuF, GaF3, YF3, AgF, InF3, HfF4, and AuF) is calculated at the canonical CCSD(T) level, and the dependence of the results on the number of correlated electrons is investigated. Although for many of the studied reactions subvalence correlation effects contribute significantly to the HDE, the use of an energy criterion permits a conservative definition of the size of the core, allowing FC calculations to be performed in a black-box fashion while retaining chemical accuracy. A comparison of the CCSD and the DLPNO-CCSD methods in describing the core-core, core-valence, and valence-valence components of the correlation energy is given. It is found that more conservative thresholds must be used for electron pairs containing at least one core electron in order to achieve high accuracy in AE DLPNO-CCSD calculations relative to FC calculations. With the new settings, the DLPNO-CCSD method reproduces canonical CCSD results in both AE and FC calculations with the same accuracy.
机译:讨论了规范和基于域的对自然轨道耦合的聚类方法(分别在标准化学应用中的主要型轨道耦合集群方法(CCSD(T)和DLPNO-CCSD(T)的有效性。特别地,我们研究结果对冻结核(FC)计算中的相关处理中包括的电子数量的依赖性以及控制DLPNO全电子(AE)计算的准确性的主要阈值。首先,计算了定期表中的原子的基地的标量相对论的轨道能量。能量标准用于确定可以从FC耦合簇计算中的相关处理中排除的轨道,而无需显着损失精度。在规范CCSD(T)水平上计算一系列金属化合物(LiF,NAF,ALF3,CAF2,CUF,GAF3,YF3,AGF,INF 3,HFF4和AUF)的杂菌离解能(HDE)。研究结果对相关电子的数量的依赖性。尽管对于许多研究的反应归属相关效果对HDE有显着贡献,但是使用能量标准允许保守定义核心的大小,允许以黑盒方式执行FC计算,同时保持化学精度。给出了CCSD和DLPNO-CCSD方法在描述相关能量的核心核心,核心价和价值组分时的比较。发现必须使用更保守的阈值来用于包含至少一个核心电子的电子对,以便在相对于FC计算中实现AE DLPNO-CCSD计算的高精度。通过新设置,DLPNO-CCSD方法可再现AE和FC计算的规范CCSD,具有相同的精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号