...
首页> 外文期刊>Hydrology and Earth System Sciences >Global change in streamflow extremes under climate change over the 21st century
【24h】

Global change in streamflow extremes under climate change over the 21st century

机译:在21世纪,气候变化下的流动极端的全球变化

获取原文
获取原文并翻译 | 示例

摘要

Global warming is expected to intensify the Earth's hydrological cycle and increase flood and drought risks. Changes over the 21st century under two warming scenarios in different percentiles of the probability distribution of streamflow, and particularly of high and low streamflow extremes (95th and 5th percentiles), are analyzed using an ensemble of bias-corrected global climate model (GCM) fields fed into different global hydrological models (GHMs) provided by the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP) to understand the changes in streamflow distribution and simultaneous vulnerability to different types of hydrological risk in different regions. In the multi-model mean under the Representative Concentration Pathway 8.5 (RCP8.5) scenario, 37% of global land areas experience an increase in magnitude of extremely high streamflow (with an average increase of 24.5 %), potentially increasing the chance of flooding in those regions. On the other hand, 43% of global land areas show a decrease in the magnitude of extremely low streamflow (average decrease of 51.5 %), potentially increasing the chance of drought in those regions. About 10% of the global land area is projected to face simultaneously increasing high extreme streamflow and decreasing low extreme streamflow, reflecting the potentially worsening hazard of both flood and drought; further, these regions tend to be highly populated parts of the globe, currently holding around 30% of the world's population (over 2.1 billion people). In a world more than 4 degrees warmer by the end of the 21st century compared to the pre-industrial era (RCP8.5 scenario), changes in magnitude of streamflow extremes are projected to be about twice as large as in a 2 degrees warmer world (RCP2.6 scenario). Results also show that inter-GHM uncer-tainty in streamflow changes, due to representation of terrestrial hydrology, is greater than the inter-GCM uncertainty due to simulation of climate change. Under both for
机译:全球变暖预计会加剧地球的水文循环,增加洪水和干旱的风险。在21世纪,在两种变暖情景下,径流概率分布的不同百分位,尤其是高和低径流极值(第95和第5百分位)的变化,使用偏差校正全球气候模型(GCM)场的集合进行分析,这些场输入由部门间影响模型相互比较项目(ISI-MIP)提供的不同全球水文模型(GHM),以了解不同地区的径流分布变化和对不同类型水文风险的同时脆弱性。在代表性浓度路径8.5(RCP8.5)情景下的多模型平均值中,37%的全球陆地区域经历了极高流量的增加(平均增加24.5%),这可能会增加这些区域发生洪水的可能性。另一方面,43%的全球陆地面积显示,极低流量的幅度有所减少(平均减少51.5%),这可能会增加这些地区发生干旱的可能性。预计全球约10%的土地面积将同时面临高极端流量增加和低极端流量减少的问题,这反映了洪水和干旱的潜在恶化风险;此外,这些地区往往是全球人口稠密的地区,目前占世界人口的30%左右(超过21亿人)。到21世纪末,与前工业化时代(RCP8.5情景)相比,全球变暖超过4度,预计极端流量的变化幅度约为变暖2度世界(RCP2.6情景)的两倍。研究结果还表明,由于地面水文的表现,GHM之间的径流变化不确定性大于GCM之间的气候变化模拟不确定性。在这两种情况下

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号