首页> 外文期刊>The ISME journal emultidisciplinary journal of microbial ecology >Transcriptomic and microRNAomic profiling reveals multi-faceted mechanisms to cope with phosphate stress in a dinoflagellate
【24h】

Transcriptomic and microRNAomic profiling reveals multi-faceted mechanisms to cope with phosphate stress in a dinoflagellate

机译:转录组和微红葡萄酒分析揭示了在恐龙素中应对磷酸盐胁迫的多刻度机制

获取原文
获取原文并翻译 | 示例
           

摘要

Although gene regulation can occur at both transcriptional and epigenetic (microRNA) levels, combined transcriptomic and microRNAomic responses to environmental stress are still largely unexplored for marine plankton. Here, we conducted transcriptome and microRNAome sequencing for Prorocentrum donghaiense to understand the molecular mechanisms by which this dinoflagellate copes with phosphorus (P) deficiency. Under P-depleted conditions, G1/S specific cyclin gene was markedly downregulated, consistent with growth inhibition, and genes related to dissolved organic phosphorus (DOP) hydrolysis, carbon fixation, nitrate assimilation, glycolysis, and cellular motility were upregulated. The elevated expression of ATP-generating genes (for example, rhodopsin) and ATP-consuming genes suggests some metabolic reconfiguration towards accelerated ATP recycling under P deficiency. MicroRNAome sequencing revealed 17 microRNAs, potentially regulating 3268 protein-coding genes. Functional enrichment analysis of these microRNA-targeted genes predicted decreases in sulfatide (sulfolipid) catabolism under P deficiency. Strikingly, we detected a significant increase in sulfolipid sulfatide content (but not in sulphoquinovosyldiacylglycerol content) and its biosynthesis gene expression, indicating a different sulfolipid-substituting-phospholipid mechanism in this dinoflagellate than other phytoplankters studied previously. Taken together, our integrative transcriptomic and microRNAomic analyses show that enhanced DOP utilization, accelerated ATP cycling and repressed sulfolipid degradation constitute a comprehensive strategy to cope with P deficiency in a model dinoflagellate.
机译:尽管基因调控可以在转录和表观遗传(microRNA)水平上发生,但海洋浮游生物对环境胁迫的转录组学和microRNA组学联合反应在很大程度上尚未被探索。在这里,我们对东海原甲藻进行了转录组和微RNA组测序,以了解这种甲藻应对磷(P)缺乏的分子机制。在缺磷条件下,G1/S特异性细胞周期蛋白基因显著下调,与生长抑制一致,与溶解有机磷(DOP)水解、碳固定、硝酸盐同化、糖酵解和细胞运动相关的基因上调。ATP生成基因(例如视紫红质)和ATP消耗基因的表达增加表明,在缺磷条件下,某些代谢重组加速了ATP循环。microRNA组测序显示17个microRNA,可能调控3268个蛋白质编码基因。对这些microRNA靶向基因的功能富集分析预测了缺磷条件下磺胺肽(磺基脂)分解代谢的减少。引人注目的是,我们检测到磺酰硫苷含量(但磺基喹二酰基甘油含量)及其生物合成基因表达显著增加,这表明这种甲藻中的磺酰硫苷替代磷脂机制与之前研究的其他浮游植物不同。综上所述,我们的综合转录组学和微RNA组学分析表明,提高DOP利用率、加速ATP循环和抑制磺基脂降解是应对模式甲藻缺磷的综合策略。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号