...
首页> 外文期刊>Annals of Biomedical Engineering: The Journal of the Biomedical Engineering Society >Thoracic artificial lung impedance studies using computational fluid dynamics and in vitro models
【24h】

Thoracic artificial lung impedance studies using computational fluid dynamics and in vitro models

机译:使用计算流体力学和体外模型进行胸腔人工肺阻抗研究

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Current thoracic artificial lungs (TALs) possess blood flow impedances greater than the natural lungs, resulting in abnormal pulmonary hemodynamics when implanted. This study sought to reduce TAL impedance using computational fluid dynamics (CFD). CFD was performed on TAL models with inlet and outlet expansion and contraction angles, θ, of 15°, 45°, and 90°. Pulsatile blood flow was simulated for flow rates of 2-6 L/min, heart rates of 80 and 100 beats/min, and inlet pulsatilities of 3.75 and 2. Pressure and flow data were used to calculate the zeroth and first harmonic impedance moduli, Z 0 and Z 1, respectively. The 45° and 90° models were also tested in vitro under similar conditions. CFD results indicate Z 0 increases as stroke volume and θ increase. At 4 L/min, 100 beats/min, and a pulsatility of 3.75, Z 0 was 0.47, 0.61, and 0.79 mmHg/(L/min) for the 15°, 45°, and 90° devices, respectively. Velocity band and vector plots also indicate better flow patterns in the 45° device. At the same conditions, in vitro Z 0 were 0.69 ± 0.13 and 0.79 ± 0.10 mmHg/(L/min), respectively, for the 45° and 90° models. These Z 0 are 65% smaller than previous TAL designs. In vitro, Z 1 increased with flow rate but was small and unlikely to significantly affect hemodynamics. The optimal design for flow patterns and low impedance was the 45° model.
机译:当前的胸腔人工肺(TAL)的血流阻抗大于自然肺,因此植入时会导致异常的肺血流动力学。这项研究试图使用计算流体动力学(CFD)来降低TAL阻抗。在进口和出口膨胀和收缩角θ为15°,45°和90°的TAL模型上执行CFD。模拟搏动血流的流速为2-6 L / min,心率分别为80和100次/分钟,入口脉动为3.75和2。使用压力和流量数据来计算零次和一次谐波阻抗模量, Z 0和Z 1。 45°和90°模型也在相似条件下进行了体外测试。 CFD结果表明Z 0随着行程量和θ的增加而增加。对于15°,45°和90°设备,在4 L / min,100次/ min的脉动和3.75的脉动下,Z 0分别为0.47、0.61和0.79 mmHg /(L / min)。速度带和矢量图还显示了45°设备中更好的流动模式。在相同条件下,对于45°和90°模型,体外Z 0分别为0.69±0.13和0.79±0.10 mmHg /(L / min)。 Z 0比以前的TAL设计小65%。在体外,Z 1随着流速增加而增加,但很小且不太可能显着影响血液动力学。流动模式和低阻抗的最佳设计是45°模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号