首页> 外文期刊>Pure and Applied Geophysics >Numerical Modeling of Marine Self-Potential from a Seafloor Hydrothermal Ore Deposit
【24h】

Numerical Modeling of Marine Self-Potential from a Seafloor Hydrothermal Ore Deposit

机译:海底热水矿床船舶自我潜力的数值模型

获取原文
获取原文并翻译 | 示例
           

摘要

The redox field generated by electrically conductive minerals is one of the main constituents of self-potentials. It can be explained by electrochemical reactions in which conductors participate. The location and outline of seafloor hydrothermal ore deposits can be detected using marine self-potential anomalies that can be approximated through a marine geobattery model. The numerical modeling of marine self-potentials could be the foundation of corresponding data inversion and interpretation and improving the application effect of the self-potential method in detecting seafloor hydrothermal ore deposits. In this study, the inert electrode model and the on-land geobattery model are introduced to build the marine geobattery model, and the finite-infinite element coupling method is derived to deal with the truncated boundary problem effectively. Also, two tests are conducted to study the effect of model parameters on ground self-potential anomalies. A seafloor sulfide deposit model is built to study the self-potential characteristics. The numerical modeling results suggest that the precision and efficiency of the coupled method are superior to that of the traditional finite element method. Self-potential anomalies are greatly affected by medium resistivity, complex terrain, and amplitudes of embedded redox fields. Gradient changes in embedded redox fields do not cause significant self-potential anomalies but lead to mutations of current sources. The self-potential anomaly from the sulfide deposit model shows that the self-potential method can be effectively used to explore seafloor hydrothermal deposits that accompany negative self-potential anomalies above the ore bodies. The coupled method is quite suitable for multi-source models such as self-potential models.
机译:导电矿物产生的氧化还原场是自电位的主要组成部分之一。这可以用导体参与的电化学反应来解释。海底热液矿床的位置和轮廓可使用海洋自电位异常进行探测,该异常可通过海洋地电池模型进行近似。海洋自生电位的数值模拟可作为相应资料反演解释的基础,提高自电位法在海底热液矿床探测中的应用效果。本研究引入惰性电极模型和陆上地球电池模型来建立海洋地球电池模型,并推导了有限元-无限元耦合方法来有效处理截断边界问题。此外,还进行了两次试验,以研究模型参数对地面自电位异常的影响。为了研究海底硫化物矿床的自电位特征,建立了海底硫化物矿床模型。数值模拟结果表明,耦合方法的精度和效率均优于传统的有限元方法。自电位异常受中等电阻率、复杂地形和嵌入氧化还原场振幅的影响很大。嵌入氧化还原场的梯度变化不会导致显著的自电位异常,但会导致电流源的突变。硫化物矿床模型中的自电位异常表明,自电位法可以有效地用于探索伴随矿体上方负自电位异常的海底热液矿床。耦合方法非常适用于多源模型,如自势模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号