...
首页> 外文期刊>Annals of Biomedical Engineering: The Journal of the Biomedical Engineering Society >Finite-element stress analysis of a multicomponent model of sheared and focally-adhered endothelial cells.
【24h】

Finite-element stress analysis of a multicomponent model of sheared and focally-adhered endothelial cells.

机译:剪切和局部粘附内皮细胞多组分模型的有限元应力分析。

获取原文
获取原文并翻译 | 示例
           

摘要

Hemodynamic forces applied at the apical surface of vascular endothelial cells may be redistributed to and amplified at remote intracellular organelles and protein complexes where they are transduced to biochemical signals. In this study we sought to quantify the effects of cellular material inhomogeneities and discrete attachment points on intracellular stresses resulting from physiological fluid flow. Steady-state shear- and magnetic bead-induced stress, strain, and displacement distributions were determined from finite-element stress analysis of a cell-specific, multicomponent elastic continuum model developed from multimodal fluorescence images of confluent endothelial cell (EC) monolayers and their nuclei. Focal adhesion locations and areas were determined from quantitative total internal reflection fluorescence microscopy and verified using green fluorescence protein-focal adhesion kinase (GFP-FAK). The model predicts that shear stress induces small heterogeneous deformations of the endothelial cell cytoplasm on the order of <100 nm. However, strain and stress were amplified 10-100-fold over apical values in and around the high-modulus nucleus and near focal adhesions (FAs) and stress distributions depended on flow direction. The presence of a 0.4 microm glycocalyx was predicted to increase intracellular stresses by approximately 2-fold. The model of magnetic bead twisting rheometry also predicted heterogeneous stress, strain, and displacement fields resulting from material heterogeneities and FAs. Thus, large differences in moduli between the nucleus and cytoplasm and the juxtaposition of constrained regions (e.g. FAs) and unattached regions provide two mechanisms of stress amplification in sheared endothelial cells. Such phenomena may play a role in subcellular localization of early mechanotransduction events.
机译:施加在血管内皮细胞根尖表面的血流动力学力可能会重新分布到远端细胞内细胞器和蛋白质复合物上,并在这些细胞内被转换成生化信号。在这项研究中,我们试图量化细胞材料的不均匀性和离散的附着点对生理液流动导致的细胞内应力的影响。稳态剪切和磁珠诱导的应力,应变和位移分布是通过对细胞特异性,多组分弹性连续介质模型的有限元应力分析确定的,该模型是由融合内皮细胞(EC)单层及其多模态荧光图像开发的核。通过定量全内反射荧光显微镜确定粘着斑的位置和面积,并使用绿色荧光蛋白-粘着斑激酶(GFP-FAK)进行验证。该模型预测,剪切应力会诱导内皮细胞胞质的小的异质形变,数量级小于100 nm。但是,应变和应力在高模量原子核内和周围以及附近的粘着斑(FAs)内和周围的顶端值放大了10-100倍,应力分布取决于流动方向。预计0.4微米糖萼的存在会使细胞内应力增加约2倍。磁珠扭转流变学模型还预测了由材料异质性和FAs引起的异质应力,应变和位移场。因此,细胞核和细胞质之间的模量的大差异以及受约束区域(例如FA)和未附着区域的并置提供了在剪切的内皮细胞中应力放大的两种机制。这种现象可能在早期机械转导事件的亚细胞定位中起作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号