首页> 外文期刊>Annals of Biomedical Engineering: The Journal of the Biomedical Engineering Society >Linear and nonlinear viscoelastic modeling of aorta and carotid pressure-area dynamics under in vivo and ex vivo conditions.
【24h】

Linear and nonlinear viscoelastic modeling of aorta and carotid pressure-area dynamics under in vivo and ex vivo conditions.

机译:体内和离体条件下的主动脉和颈动脉压力区域动力学的线性和非线性粘弹性模型。

获取原文
获取原文并翻译 | 示例
           

摘要

A better understanding of the biomechanical properties of the arterial wall provides important insight into arterial vascular biology under normal (healthy) and pathological conditions. This insight has potential to improve tracking of disease progression and to aid in vascular graft design and implementation. In this study, we use linear and nonlinear viscoelastic models to predict biomechanical properties of the thoracic descending aorta and the carotid artery under ex vivo and in vivo conditions in ovine and human arteries. Models analyzed include a four-parameter (linear) Kelvin viscoelastic model and two five-parameter nonlinear viscoelastic models (an arctangent and a sigmoid model) that relate changes in arterial blood pressure to the vessel cross-sectional area (via estimation of vessel strain). These models were developed using the framework of Quasilinear Viscoelasticity (QLV) theory and were validated using measurements from the thoracic descending aorta and the carotid artery obtained from human and ovine arteries. In vivo measurements were obtained from 10 ovine aortas and 10 human carotid arteries. Ex vivo measurements (from both locations) were made in 11 male Merino sheep. Biomechanical properties were obtained through constrained estimation of model parameters. To further investigate the parameter estimates, we computed standard errors and confidence intervals and we used analysis of variance to compare results within and between groups. Overall, our results indicate that optimal model selection depends on the artery type. Results showed that for the thoracic descending aorta (under both experimental conditions), the best predictions were obtained with the nonlinear sigmoid model, while under healthy physiological pressure loading the carotid arteries nonlinear stiffening with increasing pressure is negligible, and consequently, the linear (Kelvin) viscoelastic model better describes the pressure-area dynamics in this vessel. Results comparing biomechanical properties show that the Kelvin and sigmoid models were able to predict the zero-pressure vessel radius; that under ex vivo conditions vessels are more rigid, and comparatively, that the carotid artery is stiffer than the thoracic descending aorta; and that the viscoelastic gain and relaxation parameters do not differ significantly between vessels or experimental conditions. In conclusion, our study demonstrates that the proposed models can predict pressure-area dynamics and that model parameters can be extracted for further interpretation of biomechanical properties.
机译:对动脉壁生物力学特性的更好理解为正常(健康)和病理条件下的动脉血管生物学提供了重要的见识。这种见识有可能改善对疾病进展的跟踪,并有助于血管移植物的设计和实施。在这项研究中,我们使用线性和非线性粘弹性模型来预测绵羊和人类动脉在离体和体内条件下胸降主动脉和颈动脉的生物力学特性。分析的模型包括一个四参数(线性)开尔文粘弹性模型和两个五参数非线性粘弹性模型(一个反正切和一个S型模型),这些模型将动脉血压的变化与血管横截面积联系起来(通过估算血管应变) 。这些模型是使用准线性粘弹性(QLV)理论框架开发的,并通过从人和绵羊动脉获得的胸降主动脉和颈动脉的测量结果进行了验证。从10个绵羊主动脉和10个人颈动脉获得体内测量值。 (从两个地点)离体测量是在11只雄性美利奴绵羊中进行的。生物力学性能是通过模型参数的约束估计获得的。为了进一步研究参数估计,我们计算了标准误差和置信区间,并使用方差分析比较了组内和组间的结果。总体而言,我们的结果表明最佳模型选择取决于动脉类型。结果表明,对于胸降主动脉(在两种实验条件下),使用非线性乙状结肠模型可获得最佳预测,而在健康的生理压力负荷下,随着压力的增加,颈动脉的非线性硬化可以忽略不计,因此,线性(开尔文)粘弹性模型更好地描述了该容器中的压力区域动力学。比较生物力学性能的结果表明,开尔文模型和乙状结肠模型能够预测零压力血管的半径。在离体条件下,血管较刚性,相对而言,颈动脉比胸降主动脉更硬;容器或实验条件之间的粘弹性增益和松弛参数没有显着差异。总之,我们的研究表明,所提出的模型可以预测压力区域动态,并且可以提取模型参数以进一步解释生物力学特性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号