首页> 外文期刊>Progress in Nuclear Magnetic Resonance Spectroscopy: An International Review Journal >Contemporary approaches to high-field magnetic resonance imaging with large field inhomogeneity
【24h】

Contemporary approaches to high-field magnetic resonance imaging with large field inhomogeneity

机译:大场磁共振成像的当代方法具有大场不均匀性

获取原文
获取原文并翻译 | 示例
           

摘要

Despite its importance as a clinical imaging modality, magnetic resonance imaging remains inaccessible to most of the world's population due to its high cost and infrastructure requirements. Substantial effort is underway to develop portable, low-cost systems able to address MRI access inequality and to enable new uses of MRI such as bedside imaging. A key barrier to development of portable MRI systems is increased magnetic field inhomogeneity when using small polarizing magnets, which degrades image quality through distortions and signal dropout. Many approaches address field inhomogeneity by using a low polarizing field, approximately ten to hundreds of milli-Tesla. At low-field, even a large relative field inhomogeneity of several thousand parts-per-million (ppm) results in resonance frequency disper-sion of only 1-2 kHz. Under these conditions, with necessarily wide pulse bandwidths, fast spin-echo sequences may be used at low field with negligible subject heating, and a broad range of other available imaging sequences can be implemented. However, high-field MRI, 1.5 T or greater, can provide substantially improved signal-to-noise ratio and image contrast, so that higher spatial resolution, clinical quality images may be acquired in significantly less time than is necessary at low-field. The challenge posed by small, high-field systems is that the relative field inhomogeneity, still thousands of ppm, becomes tens of kilohertz over the imaging volume. This article describes the physical consequences of field inhomogeneity on established gradientand spin-echo MRI sequences, and suggests ways to reduce signal dropout and image distortion from field inhomogeneity. Finally, the practicality of currently available image contrasts is reviewed when imaging with a high magnetic field with large inhomogeneity. (c) 2020 Elsevier B.V. All rights reserved.
机译:尽管磁共振成像作为一种临床成像手段很重要,但由于其高成本和基础设施要求,世界上大多数人仍然无法使用它。目前正在大力开发便携式低成本系统,以解决MRI访问不平等问题,并实现MRI的新用途,如床边成像。便携式核磁共振成像系统发展的一个关键障碍是使用小型极化磁铁时磁场不均匀性增加,这会通过失真和信号丢失降低图像质量。许多方法通过使用低极化场(大约10到数百毫特斯拉)来解决场的不均匀性。在低场下,即使是百万分之几千(ppm)的较大相对场不均匀性也只会导致1-2 kHz的共振频散。在这些条件下,由于必须具有较宽的脉冲带宽,可以在低场下使用快速自旋回波序列,并且可以忽略被摄体加热,并且可以实现广泛的其他可用成像序列。然而,1.5 T或更大的高场MRI可以提供显著改善的信噪比和图像对比度,因此,与低场MRI相比,可以在更短的时间内获得更高的空间分辨率、临床质量的图像。小型高场系统带来的挑战是,相对场不均匀性(仍为数千ppm)在成像体积上变成了几十千赫。本文描述了场不均匀性对已建立的梯度和自旋回波MRI序列的物理后果,并提出了减少场不均匀性引起的信号丢失和图像失真的方法。最后,回顾了当前可用的图像对比度在大不均匀性强磁场成像中的实用性。(c) 2020爱思唯尔B.V.版权所有。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号