首页> 外文期刊>Annals of Biomedical Engineering: The Journal of the Biomedical Engineering Society >Particle-Based Methods for Multiscale Modeling of Blood Flow in the Circulation and in Devices: Challenges and Future Directions
【24h】

Particle-Based Methods for Multiscale Modeling of Blood Flow in the Circulation and in Devices: Challenges and Future Directions

机译:基于粒子的循环和设备中血流多尺度建模方法:挑战和未来方向

获取原文
获取原文并翻译 | 示例
           

摘要

A major computational challenge for a multiscale modeling is the coupling of disparate length and timescales between molecular mechanics and macroscopic transport, spanning the spatial and temporal scales characterizing the complex processes taking place in flow-induced blood clotting. Flow and pressure effects on a cell-like platelet can be well represented by a continuum mechanics model down to the order of the micrometer level. However, the molecular effects of adhesion/aggregation bonds are on the order of nanometer. A successful multiscale model of platelet response to flow stresses in devices and the ensuing clotting responses should be able to characterize the clotting reactions and their interactions with the flow. This paper attempts to describe a few of the computational methods that were developed in recent years and became available to researchers in the field. They differ from traditional approaches that dominate the field by expanding on prevailing continuum-based approaches, or by completely departing from them, yielding an expanding toolkit that may facilitate further elucidation of the underlying mechanisms of blood flow and the cellular response to it. We offer a paradigm shift by adopting a multidisciplinary approach with fluid dynamics simulations coupled to biophysical and biochemical transport.
机译:多尺度建模的主要计算挑战是分子力学与宏观传输之间不同长度和时间尺度的耦合,跨越时空尺度表征了在流动诱导的血液凝结中发生的复杂过程。对细胞样血小板的流量和压力影响可以用连续微米级的连续力学模型很好地表示。然而,粘附/聚集键的分子效应为纳米量级。一个成功的多尺度血小板对设备中血流压力反应的模型以及随后的凝血反应应该能够表征凝血反应及其与血流的相互作用。本文试图描述近年来发展起来的一些计算方法,并且可供本领域的研究人员使用。它们与传统方法不同,传统方法通过扩展流行的基于连续体的方法或完全脱离它们来主导整个领域,从而产生了扩展的工具包,该工具包可能有助于进一步阐明潜在的血流机制及其对之的细胞反应。我们采用多学科方法,结合生物物理和生化传输的流体动力学模拟,提供了范式转变。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号