首页> 外文期刊>Precambrian Research >Development of an apatite oxygen paleobarometer: Experimental characterization of Sm3+-substituted apatite fluorescence as a function of oxygen availability
【24h】

Development of an apatite oxygen paleobarometer: Experimental characterization of Sm3+-substituted apatite fluorescence as a function of oxygen availability

机译:磷灰石氧古测压仪的开发:SM3 + -substited磷灰石荧光的实验表征作为氧可用性的函数

获取原文
获取原文并翻译 | 示例
           

摘要

Global, apatite-bearing phosphorites represent unique biogeochemical periods coincident with major transitions in biological evolution and, particularly, marine oxygenation. However, current understanding of such oxygenation is limited by qualitative and not uncommonly contrasting interpretations of the marine redox conditions evidenced by sedimentary isotope and trace element abundances. A potentially novel measure of ancient marine oxygenation has previously been indicated by fluorescence signatures detected in Sm3+-substituted microfossil-preserving apatite from Early Cambrian phosphorites, consistent with experimental studies demonstrating an oxygen-dependent mechanism for Sm3+ incorporation. Quantitative calibration of these signatures would enable the interpretation of oxygen concentrations during sedimentary apatite formation. In the experiments described, heat-promoted substitution of Sm3+ in apatite powder pellets has been conducted under gaseous oxygen concentrations ranging from 0 to 20.9%. The resulting fluorescence signals provide a comparison to those observed in naturally occurring phosphorites that should reflect the levels of oxygen in the immediate precipitating environment. These analyses suggest that a metric describing the relative spectral characteristics derived from end-member oxic and anoxic experiments, here described as an apatite oxygen paleobarometer (AOP), robustly correlates with gaseous oxygen concentrations. The application of this quantifiable metric to phosphorite apatite is expected to provide a fundamentally new dataset by which to probe ancient marine redox conditions, particularly during the Neoproterozoic-Cambrian phosphogenic event and diversification of early metazoans.
机译:全球范围内,含磷灰石的磷矿代表着独特的生物地球化学时期,与生物进化,尤其是海洋氧化的重大转变相一致。然而,目前对这种氧化作用的理解受到沉积同位素和微量元素丰度证明的海洋氧化还原条件的定性解释的限制。在早寒武世磷块岩中Sm3+替代的微体化石保存磷灰石中检测到的荧光信号表明了古海洋氧化的一种潜在新测量方法,这与证明Sm3+掺入的氧依赖机制的实验研究一致。这些特征的定量校准将有助于解释沉积磷灰石形成过程中的氧浓度。在所描述的实验中,在0到20.9%的气态氧浓度范围内,对磷灰石粉末颗粒中的Sm3+进行了热促进取代。由此产生的荧光信号与在自然发生的磷矿中观察到的荧光信号进行了比较,后者应反映直接沉淀环境中的氧气水平。这些分析表明,描述端部构件有氧和缺氧实验得出的相对光谱特征的指标(此处称为磷灰石氧古气压计(AOP))与气态氧浓度密切相关。将这一可量化指标应用于磷矿-磷灰石,有望提供一个全新的数据集,用于探索古代海洋氧化还原条件,尤其是在新元古代-寒武纪成磷事件和早期后生动物多样化期间。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号