首页> 外文学位 >Oxygen isotope signature of phosphate (apatite), calcite, and quartz: Applications to metamorphism, igneous processes, surface processes, and early life.
【24h】

Oxygen isotope signature of phosphate (apatite), calcite, and quartz: Applications to metamorphism, igneous processes, surface processes, and early life.

机译:磷酸盐(磷灰石),方解石和石英的氧同位素特征:在变质,火成过程,表面过程和早期寿命中的应用。

获取原文
获取原文并翻译 | 示例

摘要

The phosphate (PO43-) anion is integral to life on earth, found primarily in mineral form as apatite (Ca5(PO 4,CO3)3(OH,C1,F,CO3). At surface temperatures, the phosphate anion is highly resistant to exchange of oxygen with surrounding minerals and fluids in the absence of metabolic activity. Depending upon the degree of phosphate oxygen exchange under conditions of elevated temperature and fluid infiltration, phosphate oxygen isotope signature may prove to be a valuable source tracer and/or biomarker.; In the first part of this dissertation, oxygen isotope analyses of phosphate, calcite, and quartz are used to evaluate the relative resistance of phosphate to oxygen isotope exchange at low to medium grade metamorphism. Metamorphic rock samples analyzed represent temperatures from ∼390°C to ∼560°C (from zeolite to upper amphibolite grades) as well as conditions of chemical alteration of the host rock. Carbonatite samples were also analyzed to determine the effect of igneous and metasomatic processes on phosphate oxygen isotope signature.; In the metamorphic rock samples analyzed, the difference (Delta 18Op-cc) between phosphate oxygen isotope values (delta 18Op) and those of calcite (delta18O cc) exhibits no trend with respect to temperature below ∼530°C, and very poorly defined trend above ∼530°C. In contrast, although the difference (Delta18Op-qtz) between delta 18Op and quartz oxygen isotope values (delta18 Oqtz) exhibits no clear trend with respect to temperature below ∼530°C, above 530°C, Delta18Op-qtz values closely agree with those obtained from equilibrium fractionation equations for corresponding temperatures. These results suggest that unlike calcite and quartz, phosphate is resistant to oxygen isotope exchange with coexisting fluid and mineral phases up to medium grade metamorphism (∼530°C).; The delta18Op values for apatite from igneous carbonatite samples are uniform, irrespective of chemical alteration of [+2.6 to +3.8‰], while [delta18Ocalcite values for the same samples vary widely [+7.6‰ (unaltered igneous) to +16.8‰ (chemically altered)]. These findings suggest that while chemical alteration largely affects calcite delta18O, it does not affect apatite delta 18Op.; Upon having established the extent of phosphate's resistance to oxygen exchange, the second part of this dissertation examines the use of phosphate oxygen isotope signature as a source tracer in two exploratory chapters. The studies detailed in chapters 3 and 4 demonstrate the significant potential of utilizing phosphate oxygen isotope signature as a source tracer and/or biomarker.; Chapter 3 examines the phosphate and carbonate oxygen isotope signature of Tertiary and Quaternary tufas (Mojave, USA) and Archaean (South Africa; Death Valley, USA; and Australia) and modern stromatolites (Sarmiento Lake, Chile). The delta18Op and delta18O c values for Precambrian marine stromatolite samples range from 10.5 to 11.4‰ and from to, respectively. The difference (Delta 18Op-c) between delta18Op values and (delta18Oc) values of the Precambrian marine stromatolites [4.2 to 11.1‰] likely reflects chemical and subsequent isotopic alteration of carbonate over time. The Delta18O p-c values of the modern non-marine Sarmiento Lake stromatolite samples [12.1 to 16.1‰] may reflect to a process heretofore unidentified which yielded a wider range of delta18Op values [10.8 to 16.3‰] than that of the delta18Oc values [28.4 to 28.8‰].; Samples of Tertiary and Quaternary tufas of the Mojave area yielded a narrow range of delta18Op values [14.4 to 18.6 ‰], and a wider range of 8180c values [24.2 to 33.9‰]. The difference (Delta18Op-c) between delta18O p values and (delta18Oc) values [-9.1 to -16.1‰] is linked to disparate temperatures and evaporation/precipitation of water at each locality.; For comparison, one Archaean sample was analyzed from the
机译:磷酸根(PO43-)阴离子是地球生命中不可或缺的元素,主要以磷灰石(Ca5(PO 4,CO3)3(OH,C1,F,CO3)的磷灰石形式存在于矿物中。在不具有代谢活性的情况下与周围的矿物质和流体交换氧,取决于在高温和流体渗透条件下磷酸盐氧交换的程度,磷酸盐氧同位素标记可能被证明是有价值的来源示踪剂和/或生物标记。 ;在本文的第一部分,利用磷酸盐,方解石和石英的氧同位素分析来评估磷酸盐在中低等变质条件下对氧同位素交换的相对阻力,分析的变质岩样品代表的温度约为390°C到〜560°C(从沸石到高级角闪石品位)以及主体岩石化学变化的条件,还分析了碳酸盐样品以确定火成岩和变质岩的影响ic过程对磷酸盐氧同位素特征的影响。在分析的变质岩样品中,温度低于530°C时,磷酸盐氧同位素值(δ18Op)与方解石(δ18Occ)之间的差异(δ18Op-cc)没有趋势,并且趋势非常不明确高于〜530°C。相比之下,尽管相对于低于530°C的温度,但高于530°C的温度,δ18Op和石英氧同位素值(delta18 Oqtz)之间的差异(Delta18Op-qtz)没有明显的趋势,但Delta18Op-qtz值与那些从平衡分馏方程式获得相应温度。这些结果表明,与方解石和石英不同,磷酸盐对氧同位素的交换具有抵抗力,可与流体相和矿物相共存,直至中度变质(约530°C)。不论化学变化为[+2.6到+ 3.8‰],火成碳酸盐样品中磷灰石的delta18Op值都是均匀的,而同一样品的[delta18Ocalcite值在[+ 7.6‰(不变的火成岩)]到+ 16.8‰(化学上变化很大)之间更改)]。这些发现表明,尽管化学变化在很大程度上影响方解石δ18O,但不会影响磷灰石δ18Op。在确定了磷酸盐对氧气交换的抵抗程度之后,本论文的第二部分在两个探索性的章节中研究了磷酸盐氧同位素特征作为源示踪剂的用途。在第3章和第4章中详细介绍的研究表明,利用磷酸盐氧同位素特征作为源示踪剂和/或生物标记物具有巨大的潜力。第3章研究了第三级和第四级氧化钙(美国莫哈韦沙漠)和古细菌(南非;美国死亡谷;以及澳大利亚)和现代叠层石(智利萨米恩托湖)的磷酸盐和碳酸盐氧同位素特征。前寒武纪海洋叠层石样品的delta18Op和delta18O c值分别在10.5至11.4‰和从至的范围内。寒武纪前海洋叠层石的delta18Op值和(delta18Oc)值之间的差异(Delta 18Op-c)可能反映了碳酸盐随时间的化学变化和随后的同位素变化。现代非海洋Sarmiento Lake叠层石样品的Delta18O pc值[12.1至16.1‰]可能反映出迄今尚未确定的过程,该过程产生的delta18Op值[10.8至16.3‰]范围比delta18Oc值[28.4至16.3‰]更大。 28.8‰]。莫哈韦沙漠地区的第三级和第四级凝灰岩样品产生的delta18Op值范围较窄[14.4至18.6‰],而较大的8180c值范围[24.2至33.9‰]。 δ18 O p值和δ18Oc值之间的差值(δ18Op-c)[-9.1至-16.1‰]与各地的温度不同和水的蒸发/沉淀有关。为了进行比较,从

著录项

  • 作者

    Donald, Elizabeth L.;

  • 作者单位

    Stanford University.;

  • 授予单位 Stanford University.;
  • 学科 Geology.; Environmental Sciences.; Geochemistry.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 140 p.
  • 总页数 140
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 地质学;环境科学基础理论;地质学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号