首页> 外文期刊>New astronomy >Advances in deep space exploration via simulators & deep learning
【24h】

Advances in deep space exploration via simulators & deep learning

机译:模拟器和深度学习的深度太空探索进展

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The NASA Starlight and Breakthrough Starshot programs conceptualize fast interstellar travel via small relativistic spacecraft that are propelled by directed energy. This process is radically different from traditional space travel and trades large and slow spacecraft for small, fast, inexpensive, and fragile ones. The main goal of these wafer satellites is to gather useful images during their deep space journey. We introduce and solve some of the main problems that accompany this concept. First, we need an object detection system that can detect planets that we have never seen before, some containing features that we may not even know exist in the universe. Second, once we have images of exoplanets, we need a way to take these images and rank them by importance. Equipment fails and data rates are slow, thus we need a method to ensure that the most important images to humankind are the ones that are prioritized for data transfer. Finally, the energy on board is minimal and must be conserved and used sparingly. No exoplanet images should be missed, but using energy erroneously would be detrimental. We introduce simulator-based methods that leverage artificial intelligence, mostly in the form of computer vision, in order to solve all three of these issues. Our results confirm that simulators provide an extremely rich training environment that surpasses that of real images, and can be used to train models on features that have yet to be observed by humans. We also show that the immersive and adaptable environment provided by the simulator, combined with deep learning, lets us navigate and save energy in an otherwise implausible way.
机译:None

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号