...
首页> 外文期刊>Nano Energy >Multipronged heat-exchanger based on femtosecond laser-nano/microstructured Aluminum for thermoelectric heat scavengers
【24h】

Multipronged heat-exchanger based on femtosecond laser-nano/microstructured Aluminum for thermoelectric heat scavengers

机译:基于飞秒激光纳米/微结构化铝的多极热交换器进行热电热清除器

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Femtosecond (fs) laser processing can significantly alter the optical, thermal, mechanical, and electrical properties of materials. Here, we show that fs-laser processing transforms aluminum (Al) to a highly efficient and multipronged heat exchanger. By optimizing the formed surface nano- and microstructures, we increase the Al emissivity and surface area by 700% and 300%, respectively. Accordingly, we show that fs-laser treated Al (fs-Al) increases the radiative and convective cooling power of fs-Al by 2100% and 300%, respectively, at 200 degrees C. As a direct application, we use fs-Al as a heat sink for a thermoelectric generator (TEG) and demonstrate a 280% increase in the TEG output power compared to a TEG with an untreated Al heat exchanger at 200 degrees C. The multipronged enhancement in fs-Al heat exchange properties lead to an increase in the TEG output power over a wide temperature (T) range (T > 50 degrees C). Conversely, a simple radiative cooling heat exchanger increases the TEG output power within a limited temperature range (T > 150 degrees C). We investigate the laser processing parameters necessary to maximize the spectral emissivity and surface area of fs-Al. Fs-Al promises to be a widely used and compact heat exchanger for passive cooling of computers and data centers as well as to increase the efficiency of TEGs incorporated in sensors and handheld electronics.
机译:None

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号