...
首页> 外文期刊>Nano Energy >Self-powered artificial skin made of engineered silk protein hydrogel
【24h】

Self-powered artificial skin made of engineered silk protein hydrogel

机译:由工程丝蛋白水凝胶制成的自动人工皮肤

获取原文
获取原文并翻译 | 示例

摘要

Engineered silk protein hydrogel that resembles skin tissue is a promising material for artificial electronic skin; it can be interfaced with real biological tissues seamlessly and used as an artificial tissue in soft robotics. Herein, we report a soft, biocompatible, and skin-adhesive silk hydrogel incorporating ZnO nanorods (ZnONRs) for a tribo- and piezo-electric energy-generating skin (EG-skin) that can harvest biomechanical energy and sense biomechanical motions. Incorporation of ZnONRs mediates an eight-fold enhancement of piezoelectricity compared to pristine silk hydrogel. An additional two-fold increase in the electrical response is possible when it is encapsulated in silk protein layers because of the hybrid effect of tribo- and piezo-electricity. The high power generated (similar to 1 mW/cm(2)) is sufficient to activate low-power electrical devices, such as LEDs, oximeters, and stopwatches. Additionally, the EG-skin can be used as a tactile identifier for finger movements with quantized real-time electrical signals. The softness and skin-adhesive properties provide conformal interfaces with human skin and biological tissues, and we can harvest energies of approximately 6.2 and 0.9 mu W/cm(2), respectively, from their mechanical stimulation. The silk-protein-based artificial EG-skin can be effectively utilized in human-machine interfaces, tactile sensors, soft robotics, and biomedical implants.
机译:None

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号