...
首页> 外文期刊>Nano Energy >High-energy all-in-one stretchable micro-supercapacitor arrays based on 3D laser-induced graphene foams decorated with mesoporous ZnP nanosheets for self-powered stretchable systems
【24h】

High-energy all-in-one stretchable micro-supercapacitor arrays based on 3D laser-induced graphene foams decorated with mesoporous ZnP nanosheets for self-powered stretchable systems

机译:基于3D激光诱导的石墨烯泡沫的高能量一体化可拉伸微型超级电容器阵列装饰着由中孔ZNP纳米片的用于自动拉伸系统

获取原文
获取原文并翻译 | 示例

摘要

Micro-supercapacitors are promising energy storage devices that can complement or even replace lithium-ion batteries in wearable and stretchable microelectronics. However, they often possess a relatively low energy density and limited mechanical stretchability. Here, we report an all-in-one planar micro-supercapacitor arrays (MSCAs) based on hybrid electrodes with ultrathin ZnP nanosheets anchored on 3D laser-induced graphene foams (ZnP@LIG) arranged in island-bridge device architecture. The hybrid electrodes with a large specific surface area demonstrate excellent ionic and electrical conductivities, impressive gravimetric (areal) capacitance of 1425 F g(-1) (7.125 F cm(-2)) at 1 A g(-1), and long-term stability. In addition to high energy (245 m Wh cm(-2)) and power (12.50 mW kg(-1) at 145 m Wh cm(-2)) densities, the MSCAs with excellent cycling stability also showcase adjustable voltage and current outputs through serial and parallel connections of MSC cells in the island-bridge design, which also allows the system to be reversibly stretched up to 100%. Meanwhile, theoretical calculations validated by UV-vis absorption spectra partially suggest that the enhanced capacitance and rate capability may result from the improved electrical conductivity and number of adsorbed charged ions (Na+ in Na2SO4 aqueous electrolyte and K+ in PVA/KCl gel electrolyte) on the pseudocapacitive non-layered ultrathin ZnP nanosheets. The integration of the all-in-one stretchable MSCAs with a crumpled Au-based triboelectric nanogenerator and stretchable crumpled graphene-based strain sensor demonstrates a self-powered stretchable system. The coupled design principle of electronic materials and device architecture provides a promising method to develop high-performance wearable/stretchable energy storage devices and self-powered stretchable systems for future bio-integrated electronics.
机译:None

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号