...
首页> 外文期刊>Journal of Materials Research >High-energy all-in-one micro-supercapacitors based on ZnO mesoporous nanosheet-decorated laser-induced porous graphene foams
【24h】

High-energy all-in-one micro-supercapacitors based on ZnO mesoporous nanosheet-decorated laser-induced porous graphene foams

机译:基于ZnO中孔纳米液装饰激光诱导多孔石墨烯泡沫的高能量一体化微型超级电容器

获取原文
获取原文并翻译 | 示例
           

摘要

Micro-supercapacitors with high power density and stability promise emerging energy storage devices. However, their relatively low energy density and poor mechanical stability largely restricts their application. Here, we report an all-in-one planar micro-supercapacitor (MSC) using ZnO nanosheets anchored on the porous and 3D laser-induced porous graphene foams (ZnO@LIG) as the electrode materials. Due to the 3D networks, the hybrid electrode exhibits fast charge transfer and diffusion channels. More importantly, the hybrid approach can simultaneously take advantage of double-layer capacitance and faradaic energy storage mechanisms.The ZnO@LIG electrode displays a high specific capacitance of 14.7 F cm~(-2), remarkable rate capability and cycling stability. Furthermore, the MSC showcases high energy density (10.0 Wh kg~(-1), high power density (0.5 Wh kg~(-1)), long-term stability, and excellent mechanical stability upon bending. The excellent performance parameters of the MSC make it one of the promising micropower sources for flexible microelectronics.
机译:具有高功率密度和稳定性的微型超级电容器承诺新兴能量存储装置。然而,它们的能量密度相对较低,机械稳定性差在很大程度上限制了它们的应用。在这里,我们在多孔和3D激光诱导的多孔石墨烯泡沫(ZnO @ Lig)上锚定的ZnO纳米片来报告一体式平面微型超级电容器(MSC)作为电极材料。由于3D网络,混合电极表现出快速电荷传递和扩散通道。更重要的是,混合方法可以同时利用双层电容和游览能量存储机制。ZnO @ Lig电极显示出14.7f cm〜(-2)的高比电容,显着的速率能力和循环稳定性。此外,MSC展示了高能量密度(10.0WH kg〜(-1),高功率密度(0.5WH kg〜(-1)),长期稳定性和弯曲时的优异的机械稳定性。优异的性能参数MSC使其成为柔性微电子的有希望的微电子来源之一。

著录项

  • 来源
    《Journal of Materials Research》 |2021年第9期|1927-1936|共10页
  • 作者单位

    Wenhua College Wuhan 430074 People's Republic of China Fujian Provincial Key Laboratory of Functional Marine Sensing Materials College of Physics and Electronic Information Engineering Minjiang University Fuzhou 350108 People's Republic of China;

    Fujian Provincial Key Laboratory of Functional Marine Sensing Materials College of Physics and Electronic Information Engineering Minjiang University Fuzhou 350108 People's Republic of China;

    Wenhua College Wuhan 430074 People's Republic of China;

    Fujian Provincial Key Laboratory of Functional Marine Sensing Materials College of Physics and Electronic Information Engineering Minjiang University Fuzhou 350108 People's Republic of China;

    Fujian Provincial Key Laboratory of Functional Marine Sensing Materials College of Physics and Electronic Information Engineering Minjiang University Fuzhou 350108 People's Republic of China;

    Fujian Provincial Key Laboratory of Functional Marine Sensing Materials College of Physics and Electronic Information Engineering Minjiang University Fuzhou 350108 People's Republic of China;

    Wenhua College Wuhan 430074 People's Republic of China;

    Fujian Provincial Key Laboratory of Functional Marine Sensing Materials College of Physics and Electronic Information Engineering Minjiang University Fuzhou 350108 People's Republic of China;

    Fujian Provincial Key Laboratory of Functional Marine Sensing Materials College of Physics and Electronic Information Engineering Minjiang University Fuzhou 350108 People's Republic of China;

    Department of Engineering Science and Mechanics Materials Research Institute Pennsylvania State University University Park PA 16802 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号