首页> 外文期刊>Materials science in semiconductor processing >Controlled epitaxial growth of GaN nanostructures on sapphire (11-20) using laser molecular beam epitaxy for photodetector applications
【24h】

Controlled epitaxial growth of GaN nanostructures on sapphire (11-20) using laser molecular beam epitaxy for photodetector applications

机译:使用激光分子束外延对光电探测器应用的蓝宝石(11-20)的GaN纳米结构的控制外延生长

获取原文
获取原文并翻译 | 示例
           

摘要

We have grown various epitaxial GaN nanostructures on sapphire (11-20) substrates by tuning the buffer layer growth conditions in laser molecular beam epitaxy (LMBE) process. The pre-nitridation and buffer layer GaN growth at low temperature (LT) on sapphire (11-20) critically affect the surface morphology and structural properties. Granular GaN thin film (similar to 160 nm) was grown on pre-nitridated sapphire whereas nano-column (NC)-GaN was obtained on LT-GaN buffer layer on bare sapphire having a height of similar to 370 nm at the growth temperature of 700 degrees C. Nano-porous (NP)-GaN was obtained with pore sizes in the range of 70 similar to 110 nm having vertical height of similar to 560 nm under similar growth conditions on LT-GaN buffered pre-nitridated sapphire. In-situ reflection high energy electron diffraction, high-resolution x-ray diffraction and Raman spectroscopy measurements indicated the epitaxial growth of c-axis oriented, wurtzite crystalline GaN nanostructures on sapphire (11 similar to 20) substrate with nearly negligible biaxial stress (0.03-0.23 GPa). Further, metal-semiconductor-metal (MSM) ultra-violet (UV) photodetectors were fabricated on epitaxial GaN nanostructures. The photo responsivity studies revealed that the NP-GaN MSM device has a photoresponse of similar to 358 mA/W at an applied bias of 1V. The photo-responsivity of NP-GaN MSM device is higher than that of GaN film (similar to 36 mA/W) and NC-GaN (similar to 7 mA/W) which revealed the importance of shape and size of GaN nanostructures on the responsivity of UV-photodetector devices. These results demonstrate the capability of LMBE technique to grow different GaN nanostructures on sapphire (11-20) substrate by tuning buffer layer conditions for their application as UV-photodetectors.
机译:None

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号