...
首页> 外文期刊>Forensic science international >A study on contactless airborne transfer of textile fibres between different garments in small compact semi-enclosed spaces
【24h】

A study on contactless airborne transfer of textile fibres between different garments in small compact semi-enclosed spaces

机译:小型半封闭空间不同服装纺织纤维非接触式空气传输研究

获取原文
获取原文并翻译 | 示例

摘要

Interpretation of fibre evidence at activity level requires extensive knowledge of all the possible transfer mechanisms that may explain the presence of fibres on a recipient surface of interest. Herein, we investigate a transfer method that has been largely understudied in previous literature: contactless transfer between garments through airborne travel. Volunteers were asked to wear UV-luminescent garments composed of different textile materials and situate themselves in a semi-enclosed space (elevator) for a pre-determined period of time with other participants, who wore non-luminescent recipient garments. The latter were then inspected for fibres using UV-luminescent photographic techniques. Results showed that contactless transfer between garments is possible. Indeed, a number of fibres were observed after most of the experiments. As many as 66 and 38 fibres were observed in the experiments involving cotton and polyester donor garments, compared to 2 and 1 fibres in those involving acrylic and wool donor garments, respectively. In this regard, the type of donor garment was found to be a significant factor. Multifactorial ANOVA supported these observations (p < 0.001) and further indicated a statistically significant influence of elevator door opening/closing (p < 0.001), people entering/exiting (p = 0.078) and the recipient garment (p = 0.030). Therefore, contactless transfer of fibres between garments can occur and can do so in (ostensibly) high numbers. This should be taken into consideration when interpreting fibre evidence at activity level and may have a major implication for the assignment of evidential values in some specific cases. (C) 2020 Elsevier B.V. All rights reserved.
机译:None

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号