...
首页> 外文期刊>Global change biology >Saturation of thylakoid-associated fatty acids facilitates bioenergetic coupling in a marine diatom allowing for thermal acclimation
【24h】

Saturation of thylakoid-associated fatty acids facilitates bioenergetic coupling in a marine diatom allowing for thermal acclimation

机译:类囊体相关脂肪酸的饱和促进在船舶硅藻中的生物能偶联,允许热适应

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

In a rapidly warming world, we ask, "What limits the potential of marine diatoms to acclimate to elevated temperatures?," a group of ecologically successful unicellular eukaryotic photoautotrophs that evolved in a cooler ocean and are critical to marine food webs. To this end, we examined thermal tolerance mechanisms related to photosynthesis in the sequenced and transformable model diatom Phaeodactylum tricornutum. Data from transmission electron microscopy (TEM) and fatty acid methyl ester-gas chromatography mass spectrometry (FAME-GCMS) suggest that saturating thylakoid-associated fatty acids allowed rapid (on the order of hours) thermal tolerance up to 28.5 degrees C. Beyond this critical temperature, thylakoid ultrastructure became severely perturbed. Biophysical analyses revealed that electrochemical leakage through the thylakoid membranes was extremely sensitive to elevated temperature (Q(10) of 3.5). Data suggest that the loss of the proton motive force (pmf) occurred even when heat-labile photosystem II (PSII) was functioning, and saturation of thylakoid-associated fatty acids was active. Indeed, growth was inhibited when leakage of pmf through thylakoid membranes was insufficiently compensated by proton input from PSII. Our findings provide a mechanistic understanding of the importance of rapid saturation of thylakoid-associated fatty acids for ultrastructure maintenance and a generation of pmf at elevated temperatures. To the extent these experimental results apply, the ability of diatoms to generate a pmf may be a sensitive parameter for thermal sensitivity diagnosis in phytoplankton.
机译:None

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号