首页> 外文期刊>International Journal of Modern Physics, C. Physics and Computers >Spin polarization in monolayer MoS2 in the presence of proximity-induced interactions
【24h】

Spin polarization in monolayer MoS2 in the presence of proximity-induced interactions

机译:在邻近诱导的相互作用存在下单层MOS2中的自旋极化

获取原文
获取原文并翻译 | 示例
       

摘要

When monolayer (ML) MoS2 is placed on a substrate, the proximity-induced interactions such as the Rashba spin-orbit coupling (RSOC) and exchange interaction (EI) can be introduced. Thus, the electronic system can behave like a spintronic device. In this study, we present a theoretical study on how the presence of the RSCO and EI can lead to the band splitting, the lifting of the valley degeneracy and to the spin polarization in n- and p-type ML MoS2. We find that the maxima of the in-plane spin orientation in the conduction and valence bands in ML MoS2 depend on the Rashba parameter and the effective Zeeman field factor. At a fixed Rashba parameter, the minima of the split conduction band and the maxima of the split valence band along with the spin polarization in ML MoS2 can be tuned effectively by varying the effective Zeeman field factor. On the basis that the EI can be induced by placing the ML MoS2 on a ferromagnetic substrate or by magnetic doping in ML MoS2, we predict that the interesting spintronic effects can be observed in n- and p-type ML MoS2. This work can be helpful to gain an in-depth understanding of the basic physical properties of ML MoS2 for application in advanced electronic and optoelectronic devices.
机译:None

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号