首页> 外文期刊>International Journal of Mechanical Sciences >Mechanical analysis of aligned carbon nanotube bundles under electric field
【24h】

Mechanical analysis of aligned carbon nanotube bundles under electric field

机译:电场下对准碳纳米管束的力学分析

获取原文
获取原文并翻译 | 示例
       

摘要

The alignment of carbon nanotubes (CNTs) has a superior role in the development of state-of-the-art electronic devices and advanced nanocomposites for diverse applications. In this regard, the implementation of an external electric field is one of the most promising methods in aligning CNTs. Estimation of the alignment time and mechanical loads on the CNTs' body is necessary for controlling the alignment, helping protect the CNTs' structure from the likely defects and generation of atomic disorders. Contrary to the most analytical investigations assessing the mechanical features of the alignment process through a 2D manner, we encounter the 3D phase in real-life applications. As such, herein, through a 3D simulation approach, the mechanical behaviors of CNT bundles are investigated and experimentally validated. We investigated the effect of bundle diameter and field amplitude on the alignment time and mechanical loads. This research reveals the hydrodynamic pressure drag force is the dominant player in exerting notable stresses to the CNTs' body. Furthermore, Raman spectroscopy of post-processed CNT bundles confirmed that the utilization of strong fields can dissociate the thinner bundles from the main one and destruct the structure of CNTs and weaken their unique mechanical strength.
机译:None

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号