首页> 外文期刊>Indian Journal of Chemical Technology >John Isotherm for the characterisation of microporous carbons: A comparative evaluation of adsorption phenomena
【24h】

John Isotherm for the characterisation of microporous carbons: A comparative evaluation of adsorption phenomena

机译:John等温线用于微孔碳的表征:吸附现象的比较评价

获取原文
获取原文并翻译 | 示例
           

摘要

John (J) isotherm model stated as log log P = C + n logV, for solid-gas equilibrium, is a unique contribution from India for the study of porous materials. These isotherms are generally characterised by different phases of adsorption marked by a sudden change in slope and sharp kinks in isotherm plots of loglog P versus log V. John isotherm is otherwise known as the phase change method. The isotherm model envisages the degree of porosity, by which the categorisation of porous materials could be done. The volume adsorbed, V(J) corresponding to saturation pressure P-s is taken as the limiting micropore volume (LMV) or John adsorption capacity. The adsorption behaviour of some known microporous carbons has been analysed using John isotherm. John isotherm along with five other isotherm models, Freundlich, Langmuir, D-R, BET and I plot methods are studied, constants and parameters are compared. There are three carbons, namely GC, its hydrogen treated form H2TGC and the nitric acid treated prodigy NITGC, whose isotherm data available is used to plot John isotherms to report the merits of the isotherm method. The results reveal that John isotherm model give excellent fit to the reported experimental data and provide precise information about the funcional mechanism of adsorption. The study aims to establish the application of John isotherm as a simple empirical isotherm model for characterising the microporosity of carbon materials over a wide range of concentration and relative pressure. The main purpose of this research paper is to reaffirm the application of John isotherm for its universal acceptance to study materials of microporous nature.
机译:None

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号