首页> 外文期刊>Annals of Physics >Bogoliubov many-body perturbation theory under constraint
【24h】

Bogoliubov many-body perturbation theory under constraint

机译:Bogoliubov许多身体扰动理论在约束下

获取原文
获取原文并翻译 | 示例
       

摘要

In order to solve the A-body Schrodinger equation both accurately and efficiently for open-shell nuclei, a novel many-body method coined as Bogoliubov many-body perturbation theory (BMBPT) was recently formalized and applied at low orders. Based on the breaking of U(1) symmetry associated with particle-number conservation, this perturbation theory must operate under the constraint that the average number of particles is self-consistently adjusted at each perturbative order. The corresponding formalism is presently detailed with the goal to characterize the behaviour of the associated Taylor series. BMBPT is, thus, investigated numerically up to high orders at the price of restricting oneself to a small, i.e. schematic, portion of Fock space. While low-order results only differ by 2 - 3% from those obtained via a configuration interaction (CI) diagonalization, the series is shown to eventually diverge. The application of a novel resummation method coined as eigenvector continuation further increases the accuracy when built from low-order BMBPT corrections and quickly converges towards the CI result when applied at higher orders. Furthermore, the numerically-costly self-consistent particle number adjustment procedure is shown to be safely bypassed via the use of a computationally cheap a posteriori correction method. Eventually, the present work validates the fact that low order BMBPT calculations based on an a posteriori (average) particle number correction deliver controlled results and demonstrates that they can be optimally complemented by the eigenvector continuation method to provide results with sub-percent accuracy. This approach is, thus, planned to become a workhorse for realistic ab initio calculations of open-shell nuclei in the near future. (C) 2020 Elsevier Inc. All rights reserved.
机译:None

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号