...
首页> 外文期刊>Archives of microbiology >Comparative study of rhizobacterial communities in pepper greenhouses and examination of the effects of salt accumulation under different cropping systems
【24h】

Comparative study of rhizobacterial communities in pepper greenhouses and examination of the effects of salt accumulation under different cropping systems

机译:不同种植系统中辣椒温室杂交群体的比较研究及盐积累对不同种植体系的影响

获取原文
获取原文并翻译 | 示例
           

摘要

This study compared rhizobacterial communities in pepper greenhouses under a paddy-upland (rice-pepper) rotational system (PURS) and a monoculture repeated cropping system (RCS) and examined adverse effects of high salinity on soil properties. The following soil properties were analyzed: electrical conductivity (EC), pH, concentration of four cations (Na, Ca, Mg, and K), total nitrogen, and organic matter content. Rhizobacterial communities were analyzed using culture-based and culture-independent (pyrosequencing) methods. In addition, all culturable bacteria isolated from each soil sample were tested for traits related to plant growth promotion. The EC of rhizospheric soils was 5.32-5.54 dS/m for the RCS and 2.05-2.19 dS/m for the PURS. The culture-based method indicated that the bacterial communities and bacterial characteristics were significantly more diverse in the PURS soil than in the RCS soil. The pyrosequencing data also indicated that the richness and diversity of bacterial communities were greater in the PURS soil. Proteobacteria was the most abundant phylum in soil samples under both cropping systems. However, Firmicutes and Gemmatimonadetes were more prevalent in the RCS soil, while the PURS soil contained a greater number of Chloroflexi. Spearman's correlation coefficients showed that soil EC was significantly positively correlated with the abundance of Firmicutes and Gemmatimonadetes and negatively correlated with the abundance of Acidobacteria, Chloroflexi, and Deltaproteobacteria. This is the first study on the rhizobacterial communities in pepper greenhouses under two different cropping systems using both culture- and pyrosequencing-based methods.
机译:None

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号