首页> 外文期刊>ACS Chemical Biology >Mechanisms of Incorporation for D-Amino Acid Probes That Target Peptidoglycan Biosynthesis
【24h】

Mechanisms of Incorporation for D-Amino Acid Probes That Target Peptidoglycan Biosynthesis

机译:掺入靶向肽聚糖生物合成的D-氨基酸探针的机制

获取原文
获取原文并翻译 | 示例
           

摘要

Bacteria exhibit a myriad of different morphologies, through the synthesis and modification of their essential peptidoglycan (PG) cell wall. Our discovery of a fluorescent D-amino acid (FDAA)-based PG labeling approach provided a powerful method for observing how these morphological changes occur. Given that PG is unique to bacterial cells and a common target for antibiotics, understanding the precise mechanism(s) for incorporation of (F)DAA-based probes is a crucial determinant in understanding the role of PG synthesis in bacterial cell biology and could provide a valuable tool in the development of new antimicrobials to treat drug-resistant antibacterial infections. Here, we systematically investigate the mechanisms of FDAA probe incorporation into PG using two model organisms Escherichia coli (Gram-negative) and Bacillus subtilis (Gram-positive). Our in vitro and in vivo data unequivocally demonstrate that these bacteria incorporate FDAAs using two extracytoplasmic pathways: through activity of their D,D-transpeptidases, and, if present, by their L,D-transpeptidases and not via cytoplasmic incorporation into a D-Ala-D-Ala dipeptide precursor. Our data also revealed the unprecedented finding that the DAA-drug, D-cycloserine, can be incorporated into peptide stems by each of these transpeptidases, in addition to its known inhibitory activity against D-alanine racemase and D-Ala-D-Ala ligase. These mechanistic findings enabled development of a new, FDAA-based, in vitro labeling approach that reports on subcellular distribution of muropeptides, an especially important attribute to enable the study of bacteria with poorly defined growth modes. An improved understanding of the incorporation mechanisms utilized by DAA-based probes is essential when interpreting results from high resolution experiments and highlights the antimicrobial potential of synthetic DAAs.
机译:None

著录项

  • 来源
    《ACS Chemical Biology》 |2019年第12期|共12页
  • 作者单位

    Harvard Med Sch Dept Genet Boston MA 02115 USA;

    UCSF Sch Med Dept Biochem &

    Biophys San Francisco CA 94158 USA;

    Indiana Univ Dept Chem Bloomington IN 47405 USA;

    Newcastle Univ Inst Cell &

    Mol Biosci Ctr Bacterial Cell Biol Newcastle Upon Tyne NE2 4AX Tyne &

    Wear England;

    Umea Univ Dept Mol Biol SE-90187 Umea Sweden;

    Univ Warwick Sch Life Sci Coventry CV4 7AL W Midlands England;

    Indiana Univ Dept Mol &

    Cellular Biochem Bloomington IN 47405 USA;

    Univ Utrecht Dept Chem NL-3584 CH Utrecht Netherlands;

    Univ Warwick Sch Life Sci Coventry CV4 7AL W Midlands England;

    Umea Univ Dept Mol Biol SE-90187 Umea Sweden;

    Newcastle Univ Inst Cell &

    Mol Biosci Ctr Bacterial Cell Biol Newcastle Upon Tyne NE2 4AX Tyne &

    Wear England;

    Univ Montreal Fac Med Dept Microbiol Infect Dis &

    Immunol Montreal PQ Canada;

    Indiana Univ Dept Chem Bloomington IN 47405 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生物化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号