首页> 外文期刊>Advanced Powder Technology: The internation Journal of the Society of Powder Technology, Japan >Direct measurement of interaction force between hydrophilic silica surfaces in triblock copolymer solutions with salt by atomic force microscopy
【24h】

Direct measurement of interaction force between hydrophilic silica surfaces in triblock copolymer solutions with salt by atomic force microscopy

机译:用原子力显微镜直接测量三嵌段共聚物溶液中亲水二硅胶表面的相互作用力

获取原文
获取原文并翻译 | 示例
           

摘要

Triblock copolymers composed of polyethylene oxide (PEO) and polypropylene oxide (PPO) are used in various fields as nonionic surfactants. In this study, we measured interaction forces between untreated hydrophilic silica surfaces in solutions with two typical triblock copolymers, Pluronic P123 (PEO20PPO70PEO20) and F127 (PEO99PPO65PEO99), in the presence of 1 mM and 500 mM NaCl using atomic force microscopy (AFM). In solutions at the copolymer concentration of 1 mu M, which is below the critical micelle concentration (CMC), the measured interaction forces were monotonically repulsive in the presence of 1 mM NaCl, which suggested the brush-like conformation of copolymers on the surfaces. When the concentration of NaCl was increased to 500 mM, interaction forces became attractive, which indicated the bridging of adsorbed polymers onto surfaces, the strength of which varied depending on the affinity and adsorption density of copolymers. The interactions at the copolymer concentration of 1 mM, which were above the CMC of both copolymers, were steric repulsions between adsorbed micelles on the surfaces with 1 mM of NaCl. For 500 mM of NaCl, an attractive jump after a steric repulsion was observed only in the force curve for P123, which inferred that the displacement of micelles from the surfaces was presumably due to a decrease in the strength of adsorption caused by the dehydration of EO groups. These results indicated that the length of the EO group considerably affected the interactions. (c) 2021 The Society of Powder Technology Japan. Published by Elsevier B.V. and The Society of Powder Technology Japan. This is an open access article under the CC BY-NC-ND license (http://creativecommons. org/licenses/by-nc-nd/4.0/).
机译:None

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号