...
首页> 外文期刊>ChemCatChem >Cu-doped Ni3S2 Interlaced Nanosheet Arrays as High-efficiency Electrocatalyst Boosting the Alkaline Hydrogen Evolution
【24h】

Cu-doped Ni3S2 Interlaced Nanosheet Arrays as High-efficiency Electrocatalyst Boosting the Alkaline Hydrogen Evolution

机译:Cu-掺杂的Ni3S2与纳米片阵列相互段落,作为高效电催化剂,促进碱性氢气进化

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Ni3S2 has been widely reported as an effective electrochemical catalyst for hydrogen evolution reaction (HER). However, the electrochemical activity of the cathode reduction reaction needs to be further improved due to the drawback of strong S-H bond interaction on the surface of Ni3S2. Herein, a series of non-precious metal Cu element doped Ni3S2 materials were prepared on the Nickel foam support (Cu-Ni3S2/NF) though a two-step hydrothermal method. Moreover, we optimized the performance of the catalyst by adjusting the molar amount of doped copper ion in the first hydrothermal process. When the molar ratio of copper ion and nickel ion is 1 : 4, the Cu-Ni3S2/NF-1/4 material with independent and clustered rose-shaped cross-nanosheet arrays structure have been used as a highly efficient electrochemical hydrogen evolution reaction (HER) catalyst. In HER process, the Cu-Ni3S2/NF-1/4 material drives the current densities of 10 mA cm(-2) and 50 mA cm(-2) under low overpotentials of 92 mV and 256 mV respectively, while Ni3S2/NF needs 210 mV and 397 mV to reach the same current densities. Density functional theory (DFT) calculation shows that the superior electrocatalytic activities are attributed to optimized water adsorption energy and enhanced electrical conductivity. The stability of catalyst was tested in 1 M KOH for 12 hours by chronoamperometry, indicating the current density has no an apparent attenuation.
机译:None

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号