...
首页> 外文期刊>Journal of Materials Chemistry, C. materials for optical and electronic devices >First principles investigations of the optical selectivity of titanium carbide-based materials for concentrating solar power applications
【24h】

First principles investigations of the optical selectivity of titanium carbide-based materials for concentrating solar power applications

机译:基于碳化钛基材料光学选择性的第一种原理研究集中太阳能电力应用

获取原文
获取原文并翻译 | 示例
           

摘要

To improve the efficiency of concentrated solar power devices and to reach a high conversion rate of the solar energy into heat, a rational design of new high temperature absorber materials is a challenge of prime importance. Ultra-high temperature ceramics can fit the requirements to act as absorber materials, provided that their chemical composition and their properties are finely tuned. Within this context, we investigated the optical selectivity of titanium carbide modified with B, N, O impurity atoms or carbon vacancies, by first principles simulations. By computing the dielectric function and the reflectivity spectra of each composition, we found that modifying TiC can have important consequence on the optical properties of the bulk material, leading in certain cases to an enhancement of the optical selectivity. Then, we assess the performance of nanocomposites made of the corresponding nanoparticles embedded in a silicon carbide media by using Mie scattering theory fed by our ab initio dielectric functions. In this case, we found that while carbon vacancies are detrimental to selectivity, alloying TiC with boron improves notably the performance of the composite material, with an increase in selectivity of about 50%.
机译:为了提高集中太阳能发电装置的效率,并实现太阳能的高转化率,合理设计新型高温吸收材料是一个至关重要的挑战。超高温陶瓷可以满足作为吸收剂材料的要求,前提是其化学成分和性能经过微调。在此背景下,我们通过第一性原理模拟研究了用B,N,O杂质原子或碳空位修饰的碳化钛的光学选择性。通过计算每种成分的介电函数和反射率谱,我们发现修饰TiC对块体材料的光学性质有重要影响,在某些情况下会导致光学选择性的增强。然后,我们使用由我们的从头算介电函数提供的米氏散射理论,评估了由嵌入在碳化硅介质中的相应纳米颗粒制成的纳米复合材料的性能。在这种情况下,我们发现,虽然碳空位对选择性有害,但将TiC与硼合金化可显著改善复合材料的性能,选择性增加约50%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号