...
首页> 外文期刊>Journal of Materials Chemistry, C. materials for optical and electronic devices >Synthesis of low-bandgap small molecules by extending the pi-conjugation of the termini in quinoidal compounds
【24h】

Synthesis of low-bandgap small molecules by extending the pi-conjugation of the termini in quinoidal compounds

机译:通过延伸奎因类化合物的PI-缀合来合成低带隙小分子

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Low-bandgap pi-conjugated small molecules have multiple applications. However, it is still a big challenge to develop such materials because of the scarcity of effective synthetic strategies. In this study, we adopt a feasible strategy, by extending the pi-conjugation of the termini in quinoidal compounds, to construct low-bandgap pi-conjugated small molecules. With this strategy, we synthesized four indandione-terminated quinoidal compounds, i.e., QIDT-H, QIDT-4F, QSiIDT-H and QSiIDT-4F. Owing to their closed-shell structures, which were confirmed by X-ray crystallographic analysis and H-1 NMR spectroscopy, these compounds showed good air stability. Absorption spectroscopy revealed that the terminal benzene rings effectively extended the pi-conjugation of these compounds and endowed them with a low bandgap. QIDT-H and QSiIDT-H showed similar bandgaps of similar to 1.23 eV, which was smaller than that of a dicyanomethylene-terminated analogue (1.38 eV). Introducing fluorine atoms on the terminal benzene rings further reduced the bandgap, thus QIDT-4F and QSiIDT-4F showed very small bandgaps of 1.06 and 0.91 eV, respectively. These values are among the lowest reported to date for small molecules. The lowest unoccupied molecular orbital energy levels of these compounds were below -4.0 eV, giving them good electron-transport characteristics in organic thin-film transistors. Our findings demonstrate that extending the pi-conjugation of the termini in quinoidal compounds is an effective strategy for developing low-bandgap pi-conjugated small molecules.
机译:低带隙π共轭小分子有多种应用。然而,由于缺乏有效的合成策略,开发此类材料仍然是一个巨大的挑战。在本研究中,我们采用了一种可行的策略,通过扩展喹诺酮类化合物末端的π共轭来构建低带隙π共轭小分子。根据这一策略,我们合成了四种吲哚醌封端的喹诺酮类化合物,即QIDT-H、QIDT-4F、QSiIDT-H和QSiIDT-4F。这些化合物具有封闭的壳层结构,经X射线晶体学分析和H-1核磁共振谱证实,具有良好的空气稳定性。吸收光谱显示,末端苯环有效地延长了这些化合物的π共轭,并赋予它们较低的带隙。QIDT-H和QSiIDT-H显示出类似于1.23 eV的带隙,这比双氰基甲基端类似物(1.38 eV)的带隙小。在末端苯环上引入氟原子进一步减小了带隙,因此QIDT-4F和QSiIDT-4F的带隙分别为1.06和0.91 eV。这些值是迄今为止报道的小分子的最低值之一。这些化合物的最低未被占据分子轨道能级低于-4.0 eV,使它们在有机薄膜晶体管中具有良好的电子传输特性。我们的研究结果表明,延长喹诺酮类化合物末端的π共轭是开发低带隙π共轭小分子的有效策略。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号