首页> 外文期刊>Journal of Materials Chemistry, A. Materials for energy and sustainability >Fluorination activates the basal plane HER activity of ReS2: a combined experimental and theoretical study
【24h】

Fluorination activates the basal plane HER activity of ReS2: a combined experimental and theoretical study

机译:氟化激活了res2的基础平面,她的res2:一个实验和理论研究

获取原文
获取原文并翻译 | 示例
           

摘要

Two-dimensional (2D) rhenium disulfide (ReS2) has been attracting immense interest as a highly promising hydrogen evolution reaction (HER) electrocatalyst recently. However, the HER catalytic active sites of ReS2 are still limited to the finite edges of the nanosheets and the basal-plane is catalytically inert. How to activate the in-plane catalytic activity of ReS2 accordingly becomes the sticking point to further boost its H-2 evolution efficiency. Here, the fluorinated ReS2 hierarchical structure assembled as ultrathin nanosheets is proved to exhibit excellent HER activity, where the optimal sample of ReS2-F-5.93 shows a low overpotential of 142 mV vs. RHE at a current density of 10 mA cm(-2), a Tafel slope of 64 mV dec(-1), and significantly improved stability. The enhanced HER performance is mainly attributed to the synergistic effects of increased in-plane active sites and remarkably accelerated charge transfer kinetics. The density functional theory calculation results reveal that F doping can yield the optimal H* adsorption Gibbs free energy and meanwhile increase the electronic states near the Fermi level for accelerated electron transfer. This work can broaden the horizon for designing efficient HER electrocatalysts via activating the in-plane catalytic activity of transition metal dichalcogenides (TMDs).
机译:二维(2D)二硫化铼(ReS2)作为一种极具发展前景的析氢反应(HER)电催化剂,近年来备受关注。然而,ReS2的HER催化活性位点仍然局限于纳米片的有限边缘,并且基面是催化惰性的。因此,如何激活ReS2的面内催化活性成为进一步提高其析氢效率的关键。在这里,组装成超薄纳米片的氟化ReS2层次结构被证明具有优异的HER活性,其中ReS2-F-5.93的最佳样品显示,在10 mA cm(-2)的电流密度下,与RHE相比,低过电位为142 mV,塔菲尔斜率为64 mV dec(-1),稳定性显著提高。HER性能的提高主要归功于面内活性中心增加和电荷转移动力学显著加速的协同效应。密度泛函理论计算结果表明,F掺杂可以产生最佳的H*吸附吉布斯自由能,同时增加费米能级附近的电子态以加速电子转移。这项工作可以通过激活过渡金属二铝酸盐(TMD)的面内催化活性来拓宽高效HER电催化剂的设计范围。

著录项

  • 来源
  • 作者单位

    South China Univ Technol Guangzhou Higher Educ Mega Ctr New Energy Res Inst Sch Environm &

    Energy Guangzhou Key Lab Surface C Guangzhou 510006 Guangdong Peoples R China;

    Chinese Acad Sci Beijing Synchrotron Radiat Facil Inst High Energy Phys Beijing 100049 Peoples R China;

    Lanzhou Univ Key Lab Magnetism &

    Magnet Mat MOE Key Lab Special Funct Mat &

    Struct Design Minist Educ Lanzhou 730000 Peoples R China;

    South China Univ Technol Guangzhou Higher Educ Mega Ctr New Energy Res Inst Sch Environm &

    Energy Guangzhou Key Lab Surface C Guangzhou 510006 Guangdong Peoples R China;

    South China Univ Technol Sch Chem &

    Chem Engn Key Lab Fuel Cell Technol Guangdong Prov Guangzhou 510640 Peoples R China;

    Lanzhou Univ Key Lab Magnetism &

    Magnet Mat MOE Key Lab Special Funct Mat &

    Struct Design Minist Educ Lanzhou 730000 Peoples R China;

    South China Univ Technol Guangzhou Higher Educ Mega Ctr New Energy Res Inst Sch Environm &

    Energy Guangzhou Key Lab Surface C Guangzhou 510006 Guangdong Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号