...
首页> 外文期刊>Journal of Materials Chemistry, A. Materials for energy and sustainability >Unprecedentedly high efficiency for photocatalytic conversion of methane to methanol over Au-Pd/TiO2 - what is the role of each component in the system?
【24h】

Unprecedentedly high efficiency for photocatalytic conversion of methane to methanol over Au-Pd/TiO2 - what is the role of each component in the system?

机译:对Au-Pd / TiO2上甲烷至甲醇的光催化转化甲烷前所未有的高效率 - 系统中每个组分的作用是什么?

获取原文
获取原文并翻译 | 示例

摘要

Direct and highly efficient conversion of methane to methanol under mild conditions still remains a great challenge. Here, we report that Au-Pd/TiO2 could directly catalyze the conversion of methane to methanol with an unprecedentedly high methanol yield of 12.6 mmol g(cat)(-1) in a one-hour photocatalytic reaction in the presence of oxygen and water. Such an impressive efficiency is contributed by several factors, including the affinity between Au-Pd nanoparticles and intermediate species, the photothermal effect induced by visible light absorption of Au-Pd nanoparticles, the employment of O-2 as a mild oxidant, and the effective dissolution of methanol in water. More importantly, for the first time, thermo-photo catalysis is demonstrated by the distinct roles of light. Namely, UV light is absorbed by TiO2 to excite charge carriers, while visible light is absorbed by Au-Pd nanoparticles to increase the temperature of the catalyst, which further enhances the driving force of corresponding redox reactions. These results not only provide a valuable guide for designing a photocatalytic system to realize highly efficient production of methanol, but also, highlight the great promise of thermo-photo catalysis.
机译:在温和条件下直接高效地将甲烷转化为甲醇仍然是一个巨大的挑战。在这里,我们报道了Au-Pd/TiO2可以直接催化甲烷转化为甲醇,在氧气和水存在的情况下,在一小时的光催化反应中,甲醇产率达到前所未有的12.6 mmol g(cat)-1。这种令人印象深刻的效率是由几个因素造成的,包括Au-Pd纳米颗粒与中间物种之间的亲和力、Au-Pd纳米颗粒可见光吸收引起的光热效应、O-2作为温和氧化剂的使用以及甲醇在水中的有效溶解。更重要的是,光的独特作用首次证明了热光催化。也就是说,紫外光被TiO2吸收以激发电荷载体,而可见光被Au-Pd纳米颗粒吸收以提高催化剂的温度,这进一步增强了相应氧化还原反应的驱动力。这些结果不仅为设计光催化系统以实现甲醇的高效生产提供了有价值的指导,而且突出了热光催化的巨大前景。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号