首页> 外文期刊>Journal of Materials Chemistry, A. Materials for energy and sustainability >Mechanically robust and superior conductive n-type polymer binders for high-performance micro-silicon anodes in lithium-ion batteries
【24h】

Mechanically robust and superior conductive n-type polymer binders for high-performance micro-silicon anodes in lithium-ion batteries

机译:用于锂离子电池中高性能微硅阳极的机械鲁棒和优越的导电N聚合物粘合剂

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Compared with nanostructured silicon (Si), the Si microparticle (SiMP) has more commercial prospects due to its low cost. However, SiMPs suffer from unavoidable fracture during electrochemical cycling owing to their significant volume change. Here we develop a series of novel n-type conductive polymer binders (CPBs) for SiMP anodes in lithium-ion batteries owing to their superior properties. Extraordinary electrochemical performance of cells with such unique binders could be achieved, which is because these designed polymers contain electron-withdrawing oxadiazole ring groups and easily ionizable sulfonate polar groups, exhibiting excellent ionic conductivity, outstanding wettability to the electrolyte, and improved electronic conductivity after doping. Moreover, the coexistence of rigid and flexible chains enables them to have exceptional strength and ductility. Besides, a unique electrochromic approach has been utilized to investigate the energy gap of the CPBs in n-doping states. The ionic and electronic conductivities of prepared CPBs in an eigenstate and n-doping state have been systematically studied by the electrochemical method, filling the current research gap in this field. Due to the high conductivity of b-POD, the capacity of SiMPs (4200 mA h g(-1)) can be almost entirely released during the first cycle of discharge, while the SiMP anodes prepared with the PAALi or CMC binder show a much lower initial capacity. The high conductivity of b-POD also endows it with better cycling performance than non-conductive binders especially at high current densities, demonstrating its excellent fast-charging ability. More essentially, this work provides polymer binders without any intricate structural designs to obtain high-performance SiMP batteries, significantly enhancing their practical applications.
机译:与纳米硅(Si)相比,Si微粒(SiMP)由于成本低而具有更大的商业前景。然而,SIMP在电化学循环过程中由于其显著的体积变化而不可避免地发生断裂。在这里,我们开发了一系列用于锂离子电池SiMP阳极的新型n型导电聚合物粘合剂(CPB),因为它们具有优异的性能。使用这种独特粘合剂的电池可以实现非凡的电化学性能,这是因为这些设计的聚合物包含吸电子的恶二唑环基团和容易电离的磺酸盐极性基团,表现出优异的离子导电性、对电解质的优异润湿性,以及掺杂后的电子导电性改善。此外,刚性链和柔性链的共存使它们具有非凡的强度和延展性。此外,一种独特的电致变色方法已被用于研究n掺杂态CPB的能隙。用电化学方法系统地研究了制备的CPB在本征态和n掺杂态下的离子和电子电导率,填补了该领域的研究空白。由于b-POD的高导电性,SiMP(4200 mA h g(-1))的容量几乎可以在第一次放电循环中完全释放,而使用PAALi或CMC粘合剂制备的SiMP阳极显示出更低的初始容量。b-POD的高导电性也使其比非导电粘合剂具有更好的循环性能,尤其是在高电流密度下,这表明了其优异的快速充电能力。更重要的是,这项工作提供了聚合物粘合剂,没有任何复杂的结构设计,以获得高性能SiMP电池,大大提高了其实际应用。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号