首页> 外文学位 >Conductive Polymeric Binder for Lithium-Ion Battery Anode.
【24h】

Conductive Polymeric Binder for Lithium-Ion Battery Anode.

机译:锂离子电池阳极导电聚合物粘结剂。

获取原文
获取原文并翻译 | 示例

摘要

Tin (Sn) has a high-specific capacity (993 mAhg-1) as an anode material for Li-ion batteries. To overcome the poor cycling performance issue caused by its large volume expansion and pulverization during the charging and discharging process, many researchers put efforts into it. Most of the strategies are through nanostructured material design and introducing conductive polymer binders that serve as matrix of the active material in anode. This thesis aims for developing a novel method for preparing the anode to improve the capacity retention rate. This would require the anode to have high electrical conductivity, high ionic conductivity, and good mechanical properties, especially elasticity. Here the incorporation of a conducting polymer and a conductive hydrogel in Sn-based anodes using a one-step electrochemical deposition via a 3-electrode cell method is reported: the Sn particles and conductive component can be electrochemically synthesized and simultaneously deposited into a hybrid thin film onto the working electrode directly forming the anode. A well-defined three dimensional network structure consisting of Sn nanoparticles coated by conducting polymers is achieved. Such a conductive polymer-hydrogel network has multiple advantageous features: meshporous polymeric structure can offer the pathway for lithium ion transfer between the anode and electrolyte; the continuous electrically conductive polypyrrole network, with the electrostatic interaction with elastic, porous hydrogel, poly (2-acrylamido-2-methyl-1-propanesulfonic acid-co-acrylonitrile) (PAMPS) as both the crosslinker and doping anion for polypyrrole (PPy) can decrease the volume expansion by creating porous scaffold and softening the system itself. Furthermore, by increasing the amount of PAMPS and creating an interval can improve the cycling performance, resulting in improved capacity retention about 80% after 20 cycles, compared with only 54% of that of the control sample without PAMPS. The cycle is performed under current of 0.1 C.
机译:锡(Sn)作为锂离子电池的负极材料具有很高的比容量(993 mAhg-1)。为了克服在充放电过程中由于其大体积膨胀和粉碎而导致的不良循环性能问题,许多研究人员对此进行了努力。大多数策略是通过纳米结构材料设计并引入导电聚合物粘合剂作为阳极中活性材料的基质。本文旨在开发一种新的制备阳极的方法,以提高容量保持率。这将要求阳极具有高电导率,高离子电导率和良好的机械性能,尤其是弹性。在此报道了通过三电极电池法通过一步电化学沉积将导电聚合物和导电水凝胶掺入Sn基阳极中:Sn颗粒和导电成分可以通过电化学方法合成,并同时沉积到杂化薄膜中膜到直接形成阳极的工作电极上。实现了由导电聚合物包覆的Sn纳米颗粒组成的定义明确的三维网络结构。这样的导电聚合物-水凝胶网络具有多个有利特征:网状聚合物结构可提供锂离子在阳极和电解质之间转移的途径;连续的导电聚吡咯网络,其与弹性的多孔水凝胶,聚(2-丙烯酰胺基-2-甲基-1-丙磺酸-共丙烯腈)(PAMPS)作为交联剂和聚吡咯的掺杂阴离子发生静电相互作用)可以通过创建多孔支架并软化系统本身来减少体积膨胀。此外,通过增加PAMPS的数量并创建间隔可以改善循环性能,从而在20个循环后可提高约80%的容量保持率,而不含PAMPS的对照样品仅为54%。该循环在0.1 C的电流下执行。

著录项

  • 作者

    Gao, Tianxiang.;

  • 作者单位

    Arizona State University.;

  • 授予单位 Arizona State University.;
  • 学科 Materials science.
  • 学位 M.S.
  • 年度 2015
  • 页码 43 p.
  • 总页数 43
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号