首页> 外文期刊>Journal of Materials Chemistry, A. Materials for energy and sustainability >Hydroxide ion dependent alpha-MnO2 enhanced via oxygen vacancies as the negative electrode for high-performance supercapacitors
【24h】

Hydroxide ion dependent alpha-MnO2 enhanced via oxygen vacancies as the negative electrode for high-performance supercapacitors

机译:氢氧化离子依赖性α-MNO2通过氧空位增强,作为高性能超级电容器的负电极

获取原文
获取原文并翻译 | 示例
           

摘要

Manganese dioxide with low-cost and high theoretical capacity plays an essential role in the development of high-performance supercapacitors. However, most of the research on the application of pure MnO2 in supercapacitors is mainly focused on positive electrode materials. In this work, we aim at studying the applicability and energy storage mechanism of MnO2 as a negative electrode material for supercapacitors, and compared three different crystalline MnO2 (delta-, beta-, and alpha-MnO2). Additionally, the electrochemical performance of alpha-MnO2 was further improved by introducing oxygen vacancies generated at high temperature. Electrochemical studies show that M-300 (alpha-MnO2 heat-treated at 300 degrees C) electrode materials have a high specific capacitance of 736.3 F g(-1) at 1 A g(-1), and exhibit remarkable cycling stability. Impressively, hydroxide ion dependence experiments and research of the electron transfer mechanism during charge and discharge indicate that the charge storage process of MnO2 as a negative electrode is realized by the participation of OH- and the mutual conversion of Mn(ii), Mn(iii) and Mn(iv), absolutely different from the MnO2 positive electrode. We also theoretically quantified the contribution of the diffusion-controlled process and surface capacitance effects to investigate its energy storage mechanism. The assembled M-300//H-NiCo2O4 asymmetric supercapacitor exhibits excellent energy density (34.9 W h kg(-1)) and cycling stability (80.6% after 10 000 cycles). This work provides a promising negative electrode material for supercapacitor device fabrication, and helps to theoretically understand the energy storage process of negative electrode materials under alkaline conditions.
机译:低成本、高理论容量的二氧化锰在高性能超级电容器的开发中起着至关重要的作用。然而,目前关于纯二氧化锰在超级电容器中应用的研究主要集中在正极材料上。在这项工作中,我们旨在研究二氧化锰作为超级电容器负极材料的适用性和储能机制,并比较了三种不同的晶体二氧化锰(δ、β和α-MnO2)。此外,通过引入高温下产生的氧空位,α-MnO2的电化学性能得到进一步改善。电化学研究表明,M-300(α-MnO2在300℃下热处理)电极材料在1 a g(-1)下具有736.3 F g(-1)的高比电容,并表现出显著的循环稳定性。令人印象深刻的是,氢离子依赖性实验和充放电过程中电子转移机理的研究表明,MnO2作为负极的电荷存储过程是通过OH-的参与以及Mn(ii)、Mn(iii)和Mn(iv)的相互转化来实现的,与MnO2正极完全不同。我们还从理论上量化了扩散控制过程和表面电容效应的贡献,以研究其储能机制。组装的M-300//H-NiCo2O4非对称超级电容器具有优异的能量密度(34.9 W H kg(-1))和循环稳定性(10000次循环后为80.6%)。这项工作为超级电容器器件的制作提供了一种有前途的负极材料,并有助于从理论上理解负极材料在碱性条件下的储能过程。

著录项

  • 来源
  • 作者单位

    Wuhan Univ Sch Phys &

    Technol Minist Educ Key Lab Artificial Micro &

    Nanostruct Wuhan 430072 Peoples R China;

    Wuhan Univ Sch Phys &

    Technol Minist Educ Key Lab Artificial Micro &

    Nanostruct Wuhan 430072 Peoples R China;

    Wuhan Univ Sch Phys &

    Technol Minist Educ Key Lab Artificial Micro &

    Nanostruct Wuhan 430072 Peoples R China;

    Wuhan Univ Sch Phys &

    Technol Minist Educ Key Lab Artificial Micro &

    Nanostruct Wuhan 430072 Peoples R China;

    Wuhan Univ Sch Phys &

    Technol Minist Educ Key Lab Artificial Micro &

    Nanostruct Wuhan 430072 Peoples R China;

    Wuhan Univ Sch Phys &

    Technol Minist Educ Key Lab Artificial Micro &

    Nanostruct Wuhan 430072 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号