...
首页> 外文期刊>Journal of Materials Chemistry, A. Materials for energy and sustainability >A solid electrolyte interphase to protect the sulfurized polyacrylonitrile (SPAN) composite for Li-S batteries: computational approach addressing the electrolyte/SPAN interfacial reactivity
【24h】

A solid electrolyte interphase to protect the sulfurized polyacrylonitrile (SPAN) composite for Li-S batteries: computational approach addressing the electrolyte/SPAN interfacial reactivity

机译:固体电解质间相互作用,以保护Li-S电池的硫化聚丙烯腈(跨度)复合材料:计算方法解决电解质/跨度界面反应性

获取原文
获取原文并翻译 | 示例
           

摘要

This study addresses the reactivity of multiple solvents and lithium bis(fluorosulfonyl)imide (LiFSI) at the interface with sulfurized polyacrylonitrile (SPAN) in multiple stages of lithiation via ab initio molecular dynamics simulations. Both ether 1,3-dioxolane (DOL) and dimethyl carbonate (DMC) proved stable on the lithiated SPAN surface regardless of the lithium content, meaning that neither of these species likely contributes to growing a solid electrolyte interphase (SEI) coating to protect the SPAN composite. Conversely, cyclic carbonates, ethylene carbonate (EC) and fluoroethylene carbonate (FEC) are shown to be very active. The EC reduction occurs only on a highly lithiated surface with a 3.0 Li/S molar ratio, the equivalent of the SPAN composite in an over-discharge regime with voltages close to 0.0 V vs. Li/Li+. The FEC reduction starts with a 2.0 Li/S molar ratio and above, suggesting that FEC could act as a useful additive in electrolyte formulations with EC. Both EC and FEC follow multiple reduction mechanisms to produce complex reduction products and LiF in the FEC case. We provide a mechanistic description for each detected decomposition path. The LiFSI salt also proves reactive against the lithiated SPAN surface. The FSI- defluorination is the dominant reduction path. However, the SO2NSO2F- and SO2NSO22- species proved stable against S-N cleavage. This behavior makes the LiFSI salt a potential candidate for SPAN-based Li-S batteries because it produces LiF without releasing SO2.
机译:本研究通过从头算分子动力学模拟,研究了多溶剂和锂双(氟磺酰)酰亚胺(LiFSI)与硫化聚丙烯腈(SPAN)界面在多个锂化阶段的反应性。无论锂含量如何,乙醚1,3-二氧戊环(DOL)和碳酸二甲酯(DMC)在锂化SPAN表面都是稳定的,这意味着这两种物质都不可能有助于形成固体电解质界面(SEI)涂层来保护SPAN复合材料。相反,环状碳酸盐、碳酸乙烯酯(EC)和碳酸氟乙烯酯(FEC)被证明非常活跃。EC还原仅发生在摩尔比为3.0 Li/S的高度锂化表面上,相当于电压接近0.0 V vs.Li/Li+的过放电状态下的SPAN复合材料。FEC的还原始于2.0 Li/S摩尔比及以上,这表明FEC可作为EC电解质配方中的有用添加剂。EC和FEC都遵循多种还原机制,在FEC情况下产生复杂的还原产物和LiF。我们为每个检测到的分解路径提供了一个机械描述。LiFSI盐对锂化SPAN表面也有反应。FSI脱氟是主要的还原途径。然而,证明SO2NSO2F-和SO2NSO22-物种对S-N裂解是稳定的。这种特性使LiFSI盐成为基于SPAN的锂硫电池的潜在候选材料,因为它在不释放SO2的情况下产生LiF。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号