...
首页> 外文期刊>Journal of Fluid Mechanics >Direct numerical simulation of a hypersonic transitional boundary layer at suborbital enthalpies
【24h】

Direct numerical simulation of a hypersonic transitional boundary layer at suborbital enthalpies

机译:亚孔焓下超声过渡边界层的直接数值模拟

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

A Mach-10 hypersonic boundary layer of air overriding a cold, isothermal, non-catalytic flat wall, and with a stagnation enthalpy of 21.6 MJ kg(-1), is analysed using direct numerical simulations. The calculations include multicomponent transport, equilibrium vibrational excitation and chemical kinetics for air dissociation. The initially laminar boundary layer undergoes transition to turbulence by the resonance of a two-dimensional mode injected by a suction-and-blowing boundary condition imposed over a narrow spanwise porous strip. The ensuing turbulent boundary layer has a momentum Reynolds number of 3826 near the outflow of the computational domain. The relatively low temperature of the free stream renders the air chemically frozen there. However, the high temperatures generated within the boundary layer by viscous aerodynamic heating, peaking at a wall-normal distance y(star) similar or equal to 10-20 in semi-local viscous units, lead to air dissociation in under-equilibrium amounts equivalent to 4 %-7% on a molar basis of atomic oxygen, along with smaller concentrations of nitric oxide, which is mainly produced by the Zel'dovich mechanism, and of atomic nitrogen, the latter being mostly in steady state. A statistical analysis of the results is provided, including the streamwise evolution of (a) the skin friction coefficient and dimensionless wall heat flux; (b) the mean profiles of temperature, velocity, density, molar fractions, chemical production rates and chemical heat-release rate; (c) the Reynolds stresses and root-mean-squares of the fluctuations of temperature, density, pressure, molar fractions and chemical heat-release rate; and (d) the temperature/velocity and mass-fraction/velocity correlations.
机译:采用直接数值模拟方法分析了马赫数为10的高超音速空气边界层,该空气边界层覆盖了一个冷的、等温的、非催化的平壁,滞止焓为21.6mj-kg(-1)。计算包括多组分输运、平衡振动激发和空气离解的化学动力学。最初的层流边界层通过在狭窄的翼展多孔带上施加抽吸和吹气边界条件注入的二维模式的共振而过渡到湍流。随后的湍流边界层在计算区域出口附近的动量雷诺数为3826。相对较低的自由气流温度使空气在那里化学冻结。然而,粘性空气动力加热在边界层内产生的高温,在壁面法向距离y(星)处达到峰值,类似于或等于10-20(半局部粘性单位),导致空气在低于平衡的量下离解,相当于原子氧摩尔数的4%-7%,以及较小浓度的一氧化氮,它主要由Zel’dovich机制和氮原子产生,后者大多处于稳定状态。对结果进行了统计分析,包括(A)表面摩擦系数和无量纲壁面热流的流向演变;(b) 温度、速度、密度、摩尔分数、化学产率和化学热释放率的平均分布;(c) 雷诺应力和温度、密度、压力、摩尔分数和化学热释放率波动的均方根;和(d)温度/速度和质量分数/速度关联式。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号