...
首页> 外文期刊>Journal of Fluid Mechanics >The turbulent bubble break-up cascade. Part 1. Theoretical developments
【24h】

The turbulent bubble break-up cascade. Part 1. Theoretical developments

机译:湍流泡泡分手级联。 第1部分。理论发展

获取原文
获取原文并翻译 | 示例

摘要

Breaking waves entrain gas beneath the surface. The wave-breaking process energizes turbulent fluctuations that break bubbles in quick succession to generate a wide range of bubble sizes. Understanding this generation mechanism paves the way towards the development of predictive models for large-scale maritime and climate simulations. Garrett et al. (J. Phys. Oceanogr., vol. 30, 2000, pp. 2163-2171) suggested that super-Hinze-scale turbulent break-up transfers entrained gas from large- to small-bubble sizes in the manner of a cascade. We provide a theoretical basis for this bubble-mass cascade by appealing to how energy is transferred from large to small scales in the energy cascade central to single-phase turbulence theories. A bubble break-up cascade requires that break-up events predominantly transfer bubble mass from a certain bubble size to a slightly smaller size on average. This property is called locality. In this paper, we analytically quantify locality by extending the population balance equation in conservative form to derive the bubble-mass-transfer rate from large to small sizes. Using our proposed measures of locality, we show that scalings relevant to turbulent bubbly flows, including those postulated by Garrett et al. (J. Phys. Oceanogr., vol. 30, 2000, pp. 2163-2171) and observed in breaking-wave experiments and simulations, are consistent with a strongly local transfer rate, where the influence of non-local contributions decays in a power-law fashion. These theoretical predictions are confirmed using numerical simulations in Part 2 (Chan et al., J. Fluid. Mech. vol. 912, 2021, A43), revealing key physical aspects of the bubble break-up cascade phenomenology. Locality supports the universality of turbulent small-bubble break-up, which simplifies the development of cascade-based subgrid-scale models to predict oceanic small-bubble statistics of practical importance.
机译:破碎的波浪将气体卷入地表之下。波浪破碎过程激发湍流波动,快速连续地破碎气泡,产生各种大小的气泡。了解这一生成机制为开发用于大规模海洋和气候模拟的预测模型铺平了道路。加勒特等人(J.Phys.Oceanogr.,vol.30,2000,pp.2163-2171)提出,超Hinze尺度湍流破裂以级联的方式将夹带的气体从大气泡尺寸转移到小气泡尺寸。通过对单相湍流理论中能量级联从大尺度到小尺度的转换,我们为这种气泡-质量级联提供了理论基础。气泡破裂级联要求破裂事件主要将气泡质量从某个气泡尺寸转移到平均尺寸稍小的尺寸。这个属性叫做局部性。在本文中,我们通过扩展保守形式的布居数平衡方程来解析地量化局部性,从而导出从大尺寸到小尺寸的气泡传质速率。利用我们提出的局部性度量,我们表明,与湍流泡状流相关的标度,包括加勒特等人(J.Phys.Oceanogr.,vol.302000,pp.2163-2171)提出的以及在碎波实验和模拟中观察到的标度,与强局部转移率一致,非局部贡献的影响以幂律方式衰减。这些理论预测在第2部分(Chan等,J.Fiel.MeC.V. 912, 2021,A43)中用数值模拟来证实,揭示了气泡破碎级联现象学的关键物理方面。局部性支持湍流小气泡破裂的普遍性,这简化了基于级联的亚网格尺度模型的开发,以预测具有实际意义的海洋小气泡统计数据。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号