【24h】

Interfacial engineering insights of promising monolayer 2D Ti3C2 MXene anchored flake-like ZnO thin films for improved PEC water splitting

机译:有前途的单层2D Ti3C2 MXIN锚定薄片ZnO薄膜的界面工程见解,用于改进PEC水分裂

获取原文
获取原文并翻译 | 示例
           

摘要

This work explores the development of novel monolayer-structured 2D Ti3C2 MXene anchored flake-like ZnO thin films (Ti3C2/ZnO and ZnO/Ti3C2) for achieving superior photoelectrochemical (PEC) water splitting activity. Specifically, swapping of Ti3C2 position at the interface of ZnO strongly influenced the charge carrier generation and separation. Taking the advantage of Ti3C2 MXene (electron trapping effect), Ti3C2 MXene interfacially anchored on the ZnO surface (ZnO/Ti3C2) achieved superior charge carrier separation compared to the Ti3C2 developed under the ZnO (Ti3C2/ZnO). Structural studies confirmed the growth of predominant Ti3C2 (002) reflection along with ZnO (002) and relative variation in the peak intensity, which revealed the role of Ti3C2 position in the resultant Ti3C2/ZnO and ZnO/Ti3C2. XPS studies revealed the role of Ti3C2 at the interface of ZnO. Moreover, surface morphological features demonstrated the successful interfacial interaction between monolayer Ti3C2 and flake-like ZnO. Interestingly, ZnO/Ti3C2 prevailed superior hydrophilic nature with water a contact angle of 42 degrees compared to pure ZnO (85 degrees) and Ti3C2/ZnO (56 degrees). As a result, ZnO/Ti3C2 promoted superior optical absorption with a reduced band gap of 3.10 eV. As evidenced from the above features, ZnO/Ti3C2 achieved photoconversion efficiency about 0.175% at +0.6 V, which suggests the electron trapping effect of Ti3C2 MXene on ZnO. In a word, swapping of Ti3C2yy MXene position at the interface of ZnO is an effective way to explore the electron trapping effect of Ti3C2 MXene and charge carrier separation for achieving superior PEC water splitting activity.
机译:本工作探索了新型单层结构2D Ti3C2 MXene锚定片状ZnO薄膜(Ti3C2/ZnO和ZnO/Ti3C2)的开发,以实现优异的光电化学(PEC)分解水活性。具体来说,Ti3C2在ZnO界面位置的交换强烈影响了载流子的产生和分离。利用Ti3C2 MXene(电子俘获效应),Ti3C2 MXene界面锚定在ZnO表面(ZnO/Ti3C2)实现了比在ZnO(Ti3C2/ZnO)下开发的Ti3C2更好的载流子分离。结构研究证实了主要Ti3C2(002)反射和ZnO(002)的生长以及峰值强度的相对变化,这揭示了Ti3C2位置在合成Ti3C2/ZnO和ZnO/Ti3C2中的作用。XPS研究揭示了Ti3C2在ZnO界面上的作用。此外,表面形貌特征表明单层Ti3C2和片状ZnO之间存在成功的界面相互作用。有趣的是,与纯ZnO(85度)和Ti3C2/ZnO(56度)相比,ZnO/Ti3C2与水的接触角为42度时具有优越的亲水性。因此,ZnO/Ti3C2促进了优异的光吸收,带隙减小了3.10 eV。从上述特征可以看出,ZnO/Ti3C2在+0.6V下实现了约0.175%的光转换效率,这表明Ti3C2-MXene对ZnO具有电子俘获效应。总之,Ti3C2yy-MXene在ZnO界面位置的交换是探索Ti3C2-MXene的电子俘获效应和电荷载流子分离以获得优异PEC水分解活性的有效途径。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号