首页> 外文期刊>Journal of Biomechanics >A predictive multiscale model for simulating flow-induced platelet activation: Correlating in silico results with in vitro results
【24h】

A predictive multiscale model for simulating flow-induced platelet activation: Correlating in silico results with in vitro results

机译:用于模拟流动诱导的血小板激活的预测多尺度模型:用体外效果在硅的结果中关联

获取原文
获取原文并翻译 | 示例
           

摘要

Flow-induced platelet activation prompts complex filopodial formation. Continuum methods fail to capture such molecular-scale mechanisms. A multiscale numerical model was developed to simulate this activation process, where a Dissipative Particle Dynamics (DPD) model of viscous blood flow is interfaced with a Coarse Grained Molecular Dynamics (CGMD) platelet model. Embedded in DPD blood flow, the macroscopic dynamic stresses are interactively transferred to the CGMD model, inducing intra-platelet associated events. The platelets activate by a biomechanical transductive linkage chain and dynamically change their shape in response. The models are fully coupled via a hybrid-potential interface and multiple time-stepping (MTS) schemes for handling the disparity between the spatiotemporal scales. Cumulative hemodynamic stresses that may lead to platelet activation are mapped on the surface membrane and simultaneously transmitted to the cytoplasm and cytoskeleton. Upon activation, the flowing platelets lose their quiescent discoid shape and evolve by forming filopodia. The model predictions were validated by a set of in vitro experiments, Platelets were exposed to various combinations of shear stresses and durations in our programmable hemodynamic shearing device (HSD). Their shape change was measured at multiple time points using scanning electron microscopy (SEM). The CGMD model parameters were fine-tuned by interrogating a parameter space established in these experiments. Segmentation of the SEM imaging streams was conducted by a deep machine learning system. This model can be further employed to simulate shear mediated platelet activation thrombosis initiation and to study the effects of modulating platelet properties to enhance their shear resistance via mechanotransduction pathways. (c) 2021 Elsevier Ltd. All rights reserved.
机译:流动诱导的血小板活化促进复杂的丝状体形成。连续介质方法无法捕捉这种分子尺度的机制。开发了一个多尺度数值模型来模拟这种激活过程,其中粘性血液流动的耗散粒子动力学(DPD)模型与粗颗粒分子动力学(CGMD)血小板模型相连接。在DPD血流中,宏观动态应力以交互方式转移到CGMD模型,诱发血小板内相关事件。血小板通过生物力学传导链激活,并相应地动态改变其形状。模型通过混合势界面和多时间步进(MTS)方案完全耦合,用于处理时空尺度之间的差异。可能导致血小板活化的累积血液动力学应力被映射到表面膜上,同时传递到细胞质和细胞骨架。激活后,流动的血小板失去其静止的盘状形状,并通过形成丝足而进化。通过一组体外实验验证了模型预测,在我们的可编程血流动力学剪切装置(HSD)中,血小板暴露于各种剪切应力和持续时间的组合中。使用扫描电子显微镜(SEM)在多个时间点测量其形状变化。通过询问在这些实验中建立的参数空间,对CGMD模型参数进行了微调。SEM成像流的分割是通过深度机器学习系统进行的。该模型可进一步用于模拟剪切介导的血小板活化血栓形成起始,并研究通过机械传导途径调节血小板特性以增强其剪切阻力的效果。(c)2021爱思唯尔有限公司保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号