首页> 外文期刊>Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics >Macro-microporous carbon with a three-dimensional channel skeleton derived from waste sunflower seed shells for sustainable room-temperature sodium sulfur batteries
【24h】

Macro-microporous carbon with a three-dimensional channel skeleton derived from waste sunflower seed shells for sustainable room-temperature sodium sulfur batteries

机译:宏观微孔碳与三维通道骨架源自废弃葵花籽壳可持续的室温硫磺电池

获取原文
获取原文并翻译 | 示例
       

摘要

Macro-microporous carbon (MMC), with a three-dimensional channel skeleton and co-doping of heteroatoms derived fromwaste sunflower seed shells, was synthesized through a facile chemical-activation process. The three-dimensional channel skeleton with a macroporous structure of the MMC formed an interwoven carbon network that effectively improved the electrical conductivity and facilitated the transfer of Nathorn in the cell by allowing the electrolyte to permeate easily. The micropores (<0.7 nm) of the MMC are the main sulfur host and serve to trap the small sulfur molecules (<0.5 nm) within the pores, resulting in excellent electrochemical performance in room-temperature sodium sulfur (RT NaeS) batteries with a carbonate-based electrolyte. The co-doping of heteroatoms (N, O) in the MMC matrix can create an active site that improves the electrical conductivity and builds an interaction with sulfur species to inhibit polysulfide shuttling. The confinement of sulfur through these physical and chemical mechanisms results in a high initial discharge capacity of 1598 mAh g(-1) at 0.1 C and a superior capacity retention of 330 mAh g(-1) after 510 cycles at 1 C. This study provides an attractive material derived from biomass for low-cost and sustainable RT NaeS batteries. (c) 2020 Elsevier B.V. All rights reserved.
机译:通过简单的化学活化过程,合成了具有三维通道骨架的大微孔炭(MMC),并将废葵花籽壳中的杂原子共掺杂。具有MMC大孔结构的三维通道骨架形成了一个交织的碳网络,通过允许电解质容易渗透,有效地提高了导电性,并促进了Nathorn在电池中的转移。MMC的微孔(<0.7 nm)是主要的硫主体,用于将小的硫分子(<0.5 nm)捕获在孔内,从而在室温钠硫(RT-NaeS)电池中产生优异的电化学性能,使用碳酸盐基电解质。MMC基质中杂原子(N,O)的共掺杂可以产生一个活性位点,提高导电性,并与硫物种建立相互作用,以抑制多硫化物穿梭。通过这些物理和化学机制限制硫,可在0.1 C下获得1598 mAh g(-1)的高初始放电容量,并在1 C下进行510次循环后保持330 mAh g(-1)的高容量。本研究为低成本可持续RT-NaeS电池提供了一种有吸引力的生物质材料。(c) 2020爱思唯尔B.V.版权所有。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号