...
首页> 外文期刊>Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics >Experimental and molecular dynamics studies of phase transformations during cryogenic thermal cycling in complex TiNi-based crystalline/amorphous alloys
【24h】

Experimental and molecular dynamics studies of phase transformations during cryogenic thermal cycling in complex TiNi-based crystalline/amorphous alloys

机译:基于硅酸尼基晶体/非晶合金中低温热循环期间相变的实验和分子动力学研究

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

In TiNi-based crystalline/amorphous alloys, superelasticity in crystalline phase coordinating the dislocation sinking in amorphous phase lead to a high ductility and outstanding anti-fatigue properties. We performed cryogenic thermal cycling, between 77 K and 303 K, on the complex TiNi-based alloys consisting of a major B2 austenite phase, an interdendritic amorphous phase, and a minor B190 martensite phase in the as-cast state. The critical martensitic phase transformation stress (sigma(m)) increased with the number of thermal cycles, reaching a maximum at 10 cycles. The initial B19' martensite which is confined in the amorphous phase transformed to B2 austenite due to thermal induced stable transformation. A lamellar structure of alternating amorphous and crystalline layers dominantly grew into the amorphous matrix as a consequence of the thermal fatigue during the cryogenic thermal cycling. Initial cell for the molecular dynamic simulations was carefully prepared to contain three different phases. Cyclic compressive loading and cryogenic thermal cycling simulations were consistent with the experimental results. (C) 2020 Elsevier B.V. All rights reserved.
机译:在TiNi基晶态/非晶态合金中,晶态中的超弹性协调了非晶态中的位错下沉,导致了高延展性和优异的抗疲劳性能。我们在77K和303K之间对复杂的TiNi基合金进行了低温热循环,该合金由铸态的主要B2奥氏体相、枝晶间非晶相和少量B190马氏体相组成。临界马氏体相变应力(σ(m))随着热循环次数的增加而增加,在10次循环时达到最大值。最初的B19'马氏体被限制在非晶态中,由于热诱导的稳定转变而转变为B2奥氏体。由于低温热循环期间的热疲劳,非晶层和晶体层交替形成的层状结构主要生长到非晶基体中。分子动力学模拟的初始单元经过精心准备,包含三个不同的相。循环压缩载荷和低温热循环模拟结果与实验结果一致。(C) 2020爱思唯尔B.V.版权所有。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号