...
首页> 外文期刊>Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics >Constructing cycle-stable Si/TiSi2 composites as anode materials for lithium ion batteries through direct utilization of low-purity Si and Ti-bearing blast furnace slag
【24h】

Constructing cycle-stable Si/TiSi2 composites as anode materials for lithium ion batteries through direct utilization of low-purity Si and Ti-bearing blast furnace slag

机译:通过直接利用低纯度Si和Ti-Hairs高炉炉渣将循环稳定的Si / TISI2复合材料作为锂离子电池的阳极材料

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The large volume expansion and poor conductivity leading to the deterioration of electrochemical performance, is a significant challenge for Si-anode materials for practical applications. Previous researches have indicated that introducing a TiSi2 buffer with high conductivity to form Si/TiSi2 composites can effectively improve the electrochemical performance of Si anode. However, the facile and low-cost synthesis of Si/TiSi2 composites remains challenging. In this study, we propose a novel approach to preparing Si/TiSi2 composites as anode materials for lithium-ion batteries by coupling photovoltaic (PV) silicon waste (simulated using inexpensive low-purity Si (98.8%) in experiments) and metallurgical waste (Ti-bearing blast furnace slag, TBBFS) via a new method combining induction melting and mechanical ball milling. A series of Si/TiSi2 materials were obtained using different ratios of raw materials and investigated using SEM, TEM, XRD, XPS and electrochemical performance tests. The results show that TiSi2 not only acts as a buffer for the bulk expansion of Si, but also improves the electrical conductivity; therefore, the Si/TiSi2 materials exhibit enhanced cycling stability when more TiSi2 is introduced. The sample prepared using a low-purity Si and TBBFS with a mass ratio of 1:3 delivered a reversible capacity of 530 mAh g(-1) after 200 cycles at a charge-discharge current density of 800 mA g(-1). This work not only provides a new strategy and technology for introducing TiSi2 into Si-based anode materials, but also provides a green and sustainable technical route for the high value-added recycling of Ti-bearing blast furnace slag. (C) 2021 Elsevier B.V. All rights reserved.
机译:硅阳极材料体积膨胀大、导电性差,导致电化学性能恶化,是硅阳极材料在实际应用中面临的重大挑战。以往的研究表明,引入高导电性的TiSi2缓冲液来形成Si/TiSi2复合材料可以有效地改善Si阳极的电化学性能。然而,Si/TiSi2复合材料的简易、低成本合成仍然具有挑战性。在这项研究中,我们提出了一种新的方法,通过感应熔炼和机械球磨相结合的新方法,将光伏(PV)硅废料(实验中使用廉价的低纯度硅(98.8%)模拟)和冶金废料(含钛高炉渣,TBBFS)耦合,制备Si/TiSi2复合材料作为锂离子电池的负极材料。采用不同比例的原料制备了一系列Si/TiSi2材料,并用SEM、TEM、XRD、XPS和电化学性能测试对其进行了研究。结果表明,TiSi2不仅对硅的体膨胀起到缓冲作用,而且提高了硅的电导率;因此,当引入更多TiSi2时,Si/TiSi2材料表现出增强的循环稳定性。使用质量比为1:3的低纯度Si和TBBFS制备的样品在800 mA g(-1)的充放电电流密度下进行200次循环后,可提供530 mAh g(-1)的可逆容量。这项工作不仅为在硅基阳极材料中引入TiSi2提供了一种新的策略和技术,而且为含钛高炉渣的高附加值回收提供了一条绿色、可持续的技术路线。(c)2021爱思唯尔B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号