首页> 外文期刊>Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics >Stress-induced alpha '' martensitic phase transformation and martensitic twinning in a metastable beta titanium alloy
【24h】

Stress-induced alpha '' martensitic phase transformation and martensitic twinning in a metastable beta titanium alloy

机译:亚稳态β钛合金中应激诱导的α'的马氏体相变和马氏体孪生

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The stress-induced martensitic (SIM) beta ->alpha '' phase transformation and SIM alpha '' twinning in the fully-beta Ti -7Mo-3Nb-3Cr-3Al (Ti-7333) alloy was investigated as a function of strain, following a surface-to-bulk methodology assisted by electron backscatter diffraction (EBSD), focused ion beam (FIB) milling and transmission electron microscopy (TEM). The results indicate that the Ti-7333 alloy is predominantly deformed by SIM and SIM alpha '' twinning. At the onset of deformation, the lattice correspondent SIM alpha '' martensite variant that produces the maximum transformation strain along the tensile direction is activated firstly, which follows the <-110>(beta)//<001> (alpha '') orientation relationship. As the strain increases, the SIM alpha '' laths deform by twinning, predominantly through the {130}<310>(alpha '') compound twinning and {111}(alpha '') type I twinning modes. Their activation can be rationalized in terms of the magnitude of the shear and the complexity of the atomic shuffle using the Bilby-Crocker deformation twinning theory. The prevalence of {130}<310>(alpha '') compound twinning in this alloy is attributed to the comparatively small shear (0.1872) and the simple shuffle (q = 2, Delta(Ia )= 0.3257) mechanism involved. During the last stages of deformation, secondary microtwinning takes place within the primary twins due to the reduced mobility of the intervariant boundaries. The evolution of such hierarchical microstructure with strain accounts for the complex microstructural features that developed with deformation, responsible for the high work hardening displayed by this alloy. (C) 2020 Elsevier B.V. All rights reserved.
机译:采用电子背散射衍射(EBSD)、聚焦离子束(FIB)铣削和透射电子显微镜(TEM)辅助的表面到体方法,研究了全βTi-7Mo-3Nb-3Cr-3Al(Ti-7333)合金中的应力诱发马氏体(SIM)β->α“相变和SIM-α”孪晶作为应变的函数。结果表明,Ti-7333合金主要通过SIM和SIM-alpha′孪晶变形。变形开始时,沿拉伸方向产生最大相变应变的“α”马氏体变体晶格首先被激活,其遵循<-110>(β)/<001>(α“)取向关系。随着应变的增加,SIM-alpha“板条通过孪晶变形,主要通过{130}<310>(alpha'')复合孪晶和{111}(alpha'')Ⅰ型孪晶模式。利用Bilby-Crocker变形孪生理论,可以根据剪切的大小和原子无序的复杂性来合理解释它们的激活。在这种合金中,{130}<310>(α“”)化合物孪晶的流行归因于相对较小的剪切(0.1872)和简单的混洗(q=2,δ(Ia)=0.3257)机制。在变形的最后阶段,由于变体间边界的迁移率降低,初级孪晶内发生二次微孪晶。这种分层组织随应变的演化解释了随着变形而发展的复杂微观结构特征,这是该合金表现出高加工硬化的原因。(C) 2020爱思唯尔B.V.版权所有。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号