首页> 外文期刊>Bulletin of earthquake engineering >FOSID: a fractional order spectrum intensity for probabilistic seismic demand modeling of extended pile-shaft-supported highway bridges under liquefaction and transverse spreading
【24h】

FOSID: a fractional order spectrum intensity for probabilistic seismic demand modeling of extended pile-shaft-supported highway bridges under liquefaction and transverse spreading

机译:FOSID:液化和横向扩散下扩展桩轴支撑的公路桥梁概率地震需求建模的分数阶谱强度

获取原文
获取原文并翻译 | 示例
           

摘要

An appropriate seismic intensity measure (IM) for response prediction is central to reliable probabilistic seismic demand modeling of structures and subsequently, risk and resilience quantification. Bridges in liquefiable and laterally spreading ground may undergo nonlinear responses with large uncertainties when subjected to earthquakes. These issues often lead to low-confidence demand models based on traditional IMs. Fractional order IMs have shown the potential to yield improved demand models in recent studies. To further increase confidence in demand models, this study proposes Fractional Order Spectrum intensity considering Integral period and Damping ratio (named FOSID). The viability of FOSID for use in probabilistic seismic demand modeling of structures is evaluated in the context of extended pile-shaft-supported bridges against liquefaction-induced lateral spreading. The performance of FOSID is systematically assessed by comparisons to an existing fractional order spectrum intensity (SIr,alpha), Housner intensity (HI)-an optimal traditional IM for these structures, and the average spectral acceleration (Sa(avg))-a state-of-the-art non-fractional-order IM. Multiple metrics for characterizing an optimal IM are adopted, including practicality, efficiency, proficiency, sufficiency, and relative sufficiency. Optimal variables of integral period, damping ratio, and fractional order for FOSID are identified for different demand parameters such as peak and residual column-drift-ratios. Results show that FOSID is generally more practical, efficient, proficient and sufficient than SIr,alpha, HI and Sa(avg). In particular, FOSID significantly outperforms HI by improving the proficiency by nearly 40% and 20% for the peak and residual column-drift-ratios, respectively. With respect to SIr,alpha, FOSID improves the proficiency by 20% and 15% on average. When compared with Sa(avg), such improvements are as large as 13% and 24% on average for the peak and residual column-drift-ratios, respectively.
机译:响应预测的适当地震烈度度量(IM)对于可靠的结构概率地震需求建模以及随后的风险和恢复力量化至关重要。在液化和横向扩展的地面上,桥梁在地震作用下可能会经历具有很大不确定性的非线性响应。这些问题往往导致基于传统IMs的低置信度需求模型。在最近的研究中,分数阶智能弹药系统显示出改进需求模型的潜力。为了进一步提高需求模型的可信度,本研究提出了考虑积分周期和阻尼比的分数阶谱强度(FOSID)。FOSID用于结构概率地震需求建模的可行性是在抗液化引起的横向扩展的扩展桩轴支撑桥梁的背景下进行评估的。FOSID的性能通过与现有分数阶谱强度(SIr,alpha)、Housner强度(HI)——这些结构的最佳传统IM,以及平均谱加速度(Sa(avg)——最先进的非分数阶IM的比较进行系统评估。采用多个指标来描述最优IM,包括实用性、效率、熟练程度、充分性和相对充分性。针对不同的需求参数,如峰值和剩余柱漂移比,确定了FOSID的积分周期、阻尼比和分数阶的最优变量。结果表明,FOSID通常比SIr、alpha、HI和Sa(avg)更实用、高效、熟练和充分。特别是,FOSID显著优于HI,其峰值和残余柱漂移率的熟练程度分别提高了近40%和20%。相对于SIr,alpha,FOSID的熟练程度平均提高20%和15%。与Sa(平均值)相比,峰值和残余柱漂移率的平均改善分别高达13%和24%。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号