首页> 外文期刊>Analytical chemistry >Real-Time Glucose Sensing by Surface-Enhanced Raman Spectroscopy in Bovine Plasma Facilitated by a Mixed Decanethiol/Mercaptohexanol Partition Layer
【24h】

Real-Time Glucose Sensing by Surface-Enhanced Raman Spectroscopy in Bovine Plasma Facilitated by a Mixed Decanethiol/Mercaptohexanol Partition Layer

机译:十二烷硫醇/巯基己醇混合层促进的牛血浆中表面增强拉曼光谱的实时葡萄糖感测

获取原文
获取原文并翻译 | 示例
           

摘要

A new, mixed decanethiol (DT)/mercaptohexanol (MH) partition layer with dramatically improved properties has been developed for glucose sensing by surface-enhanced Raman spectroscopy. This work represents significant progress toward our long-term goal of a minimally invasive, continuous, reusable glucose sensor. The DT/MH-functionalized surface has greater temporal stability, demonstrates rapid, reversible partitioning and departitioning, and is simpler to control compared to the tri-(ethylene glycol) monolayer used previously. The data herein show that this DT/MH-functionalized surface is stable for at least 10 days in bovine plasma. Reversibility is demonstrated by exposing the sensor alternately to 0 and 100 mM aqueous glucose solutions (pH approx7). The difference spectra show that complete partitioning and departitioning occur. Furthermore, physiological levels of glucose in two complex media were quantified using multivariate analysis. In the first system, the sensor is exposed to a solution consisting of water with 1 mM lactate and 2.5 mM urea. The root-mean-squared error of prediction (RMSEP) is 92.17 mg/dL (5.12 mM) with 87percent of the validation points falling within the A and B range of the Clarke error grid. In the second, more complex system, glucose is measured in the presence of bovine plasma. The RMSEP is 83.16 mg/dL (4.62 mM) with 85percent of the validation points falling within the A and B range of the Clarke error grid. Finally, to evaluate the real-time response of the sensor, the 1/e time constant for glucose partitioning and departitioning in the bovine plasma environment was calculated. The time constant is 28 s for partitioning and 25 s for departitioning, indicating the rapid interaction between the SAM and glucose that is essential for continuous sensing.
机译:通过表面增强拉曼光谱技术开发了一种新的混合癸烷硫醇(DT)/巯基己醇(MH)混合层,具有显着改善的性能,可用于葡萄糖感测。这项工作代表了我们实现微创,连续,可重复使用的葡萄糖传感器的长期目标的重大进展。与以前使用的三(乙二醇)单层相比,DT / MH官能化的表面具有更高的时间稳定性,显示出快速,可逆的分配和离解,并且易于控制。本文的数据表明该DT / MH-官能化的表面在牛血浆中稳定至少10天。可逆性通过将传感器交替暴露于0和100 mM葡萄糖水溶液(pH约7)来证明。差异光谱表明发生了完全的划分和分解。此外,使用多变量分析对两种复合培养基中葡萄糖的生理水平进行了定量。在第一个系统中,传感器暴露于由水和1 mM乳酸和2.5 mM尿素组成的溶液中。预测的均方根误差(RMSEP)为92.17 mg / dL(5.12 mM),其中87%的验证点位于Clarke误差网格的A和B范围内。在第二个更复杂的系统中,在牛血浆中测量葡萄糖。 RMSEP为83.16 mg / dL(4.62 mM),其中85%的验证点位于Clarke误差网格的A和B范围内。最后,为了评估传感器的实时响应,计算了牛血浆环境中葡萄糖分配和离解的1 / e时间常数。分配的时间常数为28 s,分离的时间常数为25 s,表明SAM和葡萄糖之间的快速相互作用对于连续感测至关重要。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号